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Abstract: It is well known that the dynamics of many physical processes can be
suitably described by Port–Hamiltonian (PH) models. In this paper we consider
the Passivity–Based Control (PBC) technique of Control by Interconnection (CbI),
where the controller is another PH system connected to the plant to add up their
energy functions. We propose two extensions to this method, first, we exploit
the non–uniqueness of the PH representation of the system to generate new cyclo–
passive outputs. Applying CbI through these new port variables overcomes the so–
called dissipation obstacle. Second, when the plant state variables are measurable,
we show that the conditions for applicability of the method can be relaxed replacing
the simple unitary feedback by a state–modulated interconnection. A central
contribution of the paper is the proof that the conditions for energy shaping via CbI
are equivalent to those imposed in Interconnection and Damping Assignment PBC,
providing in this way a nice geometric interpretation to this successful controller
design technique. Copyright c© 2007 IFAC
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1. INTRODUCTION

In the last few years we have witnessed in the
control literature, both theoretical and applied,
an ever increasing predominance of control tech-
niques that respect, and effectively exploit, the
structure of the system over the more classical

1 This work was partially supported by HYCON.

techniques that try to impose some predetermined
dynamic behavior—usually through nonlinearity
cancelation and high gain (some times euphemisti-
cally called “nonlinearity domination” (Krstic et

al., 1995)). The property of passivity plays a cen-
tral role in most of these developments. Passivity–
Based Control (PBC) is a generic name, intro-
duced in (Ortega and Spong, 1989), to define a
controller design methodology which achieves the
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control objective, e.g., stabilization, by render-
ing the system passive with respect to a desired
storage function and injecting damping. There
are many variations of the basic PBC idea, and
we refer the interested reader to (Ortega et al.,
1998; Ortega and Garćıa-Canseco, 2004; van der
Schaft, 2000) for further details and a list of ref-
erences.

In this paper we are interested in the control of dy-
namical systems endowed with a special geometric
structure, called a Port–Hamiltonian (PH) model.
As shown in (van der Schaft, 2000), PH models
provide a suitable representation of many physical
processes and have the essential feature of under-
scoring the importance of the energy function, the
interconnection pattern and the dissipation of the
system. There are many possible representations
of PH models, here we will consider the so–called
input–state–output form, where the state is as-
sumed finite dimensional and the port variables
are the input and output vectors, which satisfy
a cyclo–passivity inequality. (The distinction be-
tween cyclo–passivity and the more standard pas-
sivity property will be discussed later.) To regu-
late the behavior of PH systems it is natural then
to adopt a PBC perspective.

We consider in this paper the PBC technique of
Control by Interconnection (CbI) (Dalsmo and
van der Schaft, 1999; Ortega et al., 2001), where
the controller is another PH system with its own
state variables and energy function. The regula-
tor and the plant are interconnected in a power–
preserving way, that is, through a loss–less subsys-
tem. A straightforward application of the passiv-
ity theorem shows that the overall system is still
cyclo–passive with new energy storage function
the sum of the energy functions of the plant and
the controller. To assign to the overall energy
function a desired shape, it is necessary to “re-
late” the states of the plant and the controller
via the generation of invariant manifolds—defined
by, so–called, Casimir functions. In its basic for-
mulation, CbI assumes that only the plant out-
put is measurable and considers the classical out-
put feedback interconnection. In this case, the
Casimir functions are fully determined by the
plant, which imposes a severe restriction on the
plant dissipation structure. It has been shown
in (Ortega et al., 2001) that, roughly speaking,
“dissipation cannot be present on the coordinates
to be shaped”. This, so–called, dissipation obsta-
cle stymies the use of CbI for applications other
than mechanical systems where the coordinates
to be shaped are typically positions, which are
unaffected by friction.

To overcome the dissipation obstacle and increase
the domain of applicability of CbI we introduce
here two extensions to the method. First, exploit-

ing the non–uniqueness of the PH representation
of the system, we propose a procedure to gen-
erate new cyclo–passive outputs (with new stor-
age functions). The procedure is inspired by the
power–shaping stabilization technique recently in-
troduced for RLC circuits in (Ortega et al., 2003)
and later extended to general nonlinear systems
in (Garćıa-Canseco et al., 2006). Applying CbI
through these new port variables overcomes the
dissipation obstacle, but still rules out several
interesting physical examples.

Given the fact that CbI is an output feedback
control strategy it is not surprising that there are
some limitations for its successful application. Our
second, and key modification, assumes that the
plant state variables are available for measure-
ment, and proposes to replace the simple output
feedback by a suitably defined state–modulated
interconnection. In this way, the conditions for
existence of Casimir functions can be further re-
laxed. Our main contribution is the proof that the
latter conditions are necessary and sufficient for
the solution of the matching equations of Basic
Interconnection and Damping Assignment (IDA)
PBC introduced in (Ortega et al., 2002a), see
also (Fujimoto and Sugie, 2001; Ortega et al.,
2001; Ortega and Garćıa-Canseco, 2004; van der
Schaft, 2000) for more recent developments and
(Bloch et al., 2002; Ortega and Spong, 1989; Or-
tega et al., 2002b) for the particular case of me-
chanical systems. Actually, it is shown in the pa-
per that the (static state feedback) IDA–PBC law
is the projection of the (dynamic state feedback)
state–modulated CbI on the invariant manifold
defined by the Casimir functions. Similarly, the
closed–loop dynamics resulting from application
of IDA–PBC is the reduction of the dynamics
of the CbI controlled system to this invariant
subspace.

The importance of establishing the equivalence
between CbI and IDA–PBC can hardly be overes-
timated. On one hand, it provides a nice geometric
interpretation to this highly successful controller
design technique, which has been previously pre-
sented from a uninspiring and non–intuitive model
matching perspective. (At a more fundamental
level, viewing IDA–PBC as (a projection of) in-
terconnected subsystems is consistent with the
behavioral framework, which claims that the clas-
sical input–to–output assignment perspective is
unsuitable to deal, at an appropriately general
level, with the basic tenets of systems theory.)
On the other hand, the experience gained in the
design of Lyapunov–based stabilizing state feed-
backs paves the way for new extensions of CbI,
which is by far the most natural procedure for
controller design.
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Notation All vectors defined in the paper are
column vectors, even the gradient of a scalar func-
tion that we denote with the operator ∇x = ∂

∂x
.

For vector functions C : R
n → R

m, we de-

fine the (transposed) Hessian matrix ∇xC(x)
△
=

[∇xC1(x), . . . ,∇xCm(x)]. When clear from the
context the subindex of the operator ∇ and the
arguments of the functions will be omitted.

Caveat This is an abridged version of the paper
where all proofs have been omitted. The full
version of the paper is available upon request to
the authors.

2. CONTROL BY (OUTPUT FEEDBACK)
INTERCONNECTION OF PH SYSTEMS

In order to make this paper self–contained we
briefly review in this section the basic version of
the CbI method. Also, we discuss its relation with
the EBC technique of (Ortega et al., 2001) and
with Basic IDA–PBC.

2.1 Cyclo–Passivity of Port–Hamiltonian Systems

PH models of power–conserving physical systems
were introduced in (Bernhard Maschke and Bred-
veld, 1992), see (van der Schaft, 2000) for a review.
The input–state–output representation of PH sys-
tems is of the form

Σ(u,y)

{
ẋ = [J (x) −R(x)]∇H(x) + g(x)u

y = g⊤(x)∇H(x),
(1)

where x ∈ R
n is the state vector, u ∈ R

m,
m ≤ n, is the control action, H : R

n → R is
the total stored energy, J ,R : R

n → R
n×n, with

J = −J⊤ and R = R⊤ ≥ 0, are the natural inter-
connection and damping matrices, respectively, u,
y ∈ R

m, are conjugated variables whose product
has units of power and g : R

n → R
n×m is as-

sumed full rank. We bring to the readers attention
the important fact that H is not assumed to be
positive semi–definite (nor bounded from below).
Also, to simplify the notation in the sequel we
define the matrix

F (x)
△
= J (x) −R(x),

which clearly satisfies F + F⊤ = −2R ≤ 0.

The power conservation property of PH systems
is captured by the power–balance equation

Ḣ = − (∇H)
⊤
R∇H + u⊤y. (2)

Using the fact that R ≥ 0 we obtain the bound

Ḣ ≤ u⊤y, (3)

that, following the original denomination of (Wil-
lems, 1972), we refer as cyclo–passivity inequality.

Systems satisfying such an inequality are called
cyclo–passive, which should be distinguished from
passive systems where H is positive semi–definite.
In words, a system is cyclo–passive when it cannot
create energy over closed paths in the state–
space. It might, however, produce energy along
some initial portion of such a trajectory; if so,
it would not be passive. On the other hand,
every passive system is cyclo–passive. It has been
shown in (Hill and Moylan, 1980) that, similarly
to passive systems, one can use storage functions
and passivity inequalities to characterize cyclo–
passivity provided we eliminate the restriction
that these storage functions be non–negative.

2.2 Energy Shaping via Control by Interconnection

with Σ(u,y)

As indicated above, in PBC the control objective
is achieved rendering the system passive with re-
spect to a desired storage function and injecting
damping. For the basic problem of stabilization,
the desired energy function should have a mini-
mum at the equilibrium and the damping injection
insures that the function is non–increasing. In this
way, the energy function qualifies as a Lyapunov
function. We now briefly review the PBC method
of CbI for stabilization of PH systems, we refer
the reader to (van der Schaft, 2000) for further
details and extensions. The configuration used for
CbI is shown in Fig. 1, where the controller, Σc, is
a PH system, coupled with the plant, Σ(u,y), via
the interconnection subsystem, ΣI , that we select
to be power–preserving. That is, such that, for all
t ≥ 0,

y⊤(t)u(t) + y⊤

c (t)uc(t) = y⊤(t)v(t), (4)

where v is an external signal that we introduce
to define the port variables of the interconnected
system and (possibly) inject additional damping.

+

+
+

– –

–

v

Σ(u,y) ΣC

ΣI

y

yCu

uC

Fig. 1. Block diagram of the CbI scheme.

We choose the dynamics of the controller to be a
simple set of (possibly nonlinear) integrators, that
is,

Σc :

{

ζ̇ = uc

yc = ∇ζHc(ζ),
(5)

where ζ, uc, yc ∈ R
m, and Hc : R

m → R is the
controllers energy function—to be defined later. 2

From

2 For ease of notation, and without loss of generality, we

have taken the order of Σc to be equal to the number of
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Ḣc = u⊤

c yc, (6)

we see that Σc is cyclo–passive. In its simplest
formulation, CbI assumes that we measure only
the plant output and fixes ΣI to be the standard
negative feedback interconnection

ΣI :

{ [
u

uc

]

=

[
0 −1
1 0

] [
y

yc

]

+

[
v

0

]

, (7)

which clearly satisfies (4). Combining (3), (4) and
(6), we obtain that the interconnected system is
also cyclo–passive with port variables (v, y) and
energy function the sum of the energy functions
of the plant and the controller, that is

Ḣ + Ḣc ≤ v⊤y. (8)

To complete the shaping of the energy function
CbI invokes the Energy–Casimir method—well–
known in Hamiltonian systems analysis, see e.g.
(Dalsmo and van der Schaft, 1999), (Marsden and
Ratiu, 1999)—and looks for conserved quantities
(dynamical invariants) of the overall system. If
such quantities can be found we can generate
Lyapunov function candidates combining the con-
served quantities and the energy function. We will
look, in particular, for functions that are con-
served for all energy functions H and Hc—such
functions are called Casimir.

The application of the Energy–Casimir method
for stability analysis of (output feedback) CbI is
summarized below.

Proposition 1. Consider the PH system Σ(u,y) (1)
coupled with the PH controller Σc (5) through
the power–preserving interconnection subsystem
ΣI (7). Assume there exists a vector function
C : R

n → R
m such that

F⊤(x)∇C(x) = g(x), g⊤(x)∇C(x) = 0 (9)

Then, for all functions Φ : R
m → R, the following

cyclo–passivity inequality is satisfied

Ẇ ≤ v⊤y, (10)

where the storage function W : R
n × R

m → R is
defined as

W (x, ζ)
△
= H(x) + Hc(ζ) + Φ(C(x) − ζ). (11)

Remark 1. In (Ortega et al., 2001) the energy
shaping action of CbI was viewed from an alterna-
tive perspective—geometric instead of Lyapunov–
based—that proceeds as follows. First, we notice
that the level sets of the Casimir functions, ζ −
C(x), are invariant sets for the interconnected
system. That is, the manifolds

Ωκ
△
= {(x, ζ) ∈ R

n × R
m| ζ = C(x) + κ}, κ ∈ R

inputs. A discussion on this issue may be found in (van der
Schaft, 2000).

are invariant for the overall dynamics. 3 Then,
projecting the system on Ωκ yields the reduced

dynamics ẋ = F∇Hs, where Hs(x)
△
= H(x) +

Hc[C(x) + κ] plays the role of shaped energy
function. Even though with a proper selection of
the initial conditions of the controller we can set
κ = 0, the fact that the shaped energy function
depends on this constant is rather unnatural, thus
we have presented the result using a Lyapunov
viewpoint.

2.3 CbI with Σ(u,y) ⇒ Energy Balancing Control

⇒ Basic IDA–PBC

In this subsection we prove that, when the state
is available for measurement, the conditions of
Proposition 1 ensure the existence of a static
state–feedback that shapes the energy function
without modifying the interconnection and damp-
ing structures. That is, that yields the closed–loop
dynamics ẋ = F∇Hd + gv, where the storage
function Hd : R

n → R is defined as

Hd(x)
△
= H(x) + Ha(x) (12)

for some Ha : R
n → R. Furthermore, we prove

that the shaped energy function equals the differ-
ence between the systems stored energy and the
energy extracted from the environment—which
was called an Energy Balancing Controller (EBC)
in (Ortega et al., 2001).

Before presenting the main result, it is useful to re-
call the distinction between EBC and a controller
that simply shapes the energy, without modify-
ing the interconnection and damping structures,
that was called Basic IDA–PBC in (Ortega et

al., 2002a). In the latter, we require the existence
of a state feedback control ûBIDA : R

n → R
m so

that the matching condition

F (x)∇H(x) + g(x)ûBIDA(x) = F (x)∇Hd(x)

⇔

g(x)ûBIDA(x) = F (x)∇Ha(x)

is verified. Pre–multiplying the right hand side

equation by the full rank square matrix

[
g⊤(x)

g⊥(x)

]

,

where g⊥ : R
n → R

(n−m)×n, is a full–rank left
annihilator of g, that is, g⊥g = 0 and rank g⊥ =
n−m, we obtain that all solutions of the matching
problem above are given by the solutions of the
PDE

g⊥F∇Ha = 0, (13)

together with the (uniquely defined) control

ûBIDA = (g⊤g)−1g⊤F∇Ha.

3 We recall that a manifold Ωκ ⊂ R
n × R

m is invariant if

(x(0), ζ(0)) ∈ Ωκ ⇒ (x(t), ζ(t)) ∈ Ωκ for all t ≥ 0.
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In an EBC, besides satisfying the matching con-
dition, we additionally require that the control
action, called ûEB : R

n → R
m, and the added

energy function satisfy

Ha(x(t)) = −

∫ t

0

û⊤

EB
(x(s)) g⊤(x(s))∇H(x(s))

︸ ︷︷ ︸

y(s)

ds+

+ Ha(x(0)). (14)

Hence, Ha has the interpretation of the energy
extracted from the controller. The condition for
energy balancing (14) is equivalent to the PDE

∇H⊤

a (F∇H + gûEB) = −û⊤

EB
g⊤∇H. (15)

Adding Ḣ to both sides of the previous equation
shows that, for an EBC,

Ḣd = ∇H⊤F∇H + v⊤y.

Remark that the dissipation term appears with
the open–loop energy function, in contrast with
the dissipation for the (more general) Basic IDA–
PBC where it takes the form ∇H⊤

d F∇Hd. Clearly,
not all controllers satisfying the matching equa-
tion of Basic IDA–PBC are EBC. In the next
subsection we investigate the implications of the
energy balancing condition on the systems natural
dissipation.

The following proposition shows that, projecting
the CbI on the manifold ζ = C(x), yields an EBC.

Proposition 2. Assume the PDEs (9) admit a so-
lution. Then, for all functions Hc : R

m → R,
the PH system Σ(u,y) (1) in closed–loop with the
static state–feedback control u = ûEB(x)+v, where

ûEB(x) = −∇CHc(C(x)),

satisfies the cyclo–passivity inequality

Ḣd ≤ v⊤y, (16)

where the storage function Hd is defined by (12)
with

Ha(x)
△
= Hc(C(x)). (17)

Furthermore, the controller is an EBC that satis-
fies (14).

2.4 The Dissipation Obstacle

Proposition 1 shows that, via the selection of Hc

and Φ, it is possible to shape the energy function
of the interconnected system—provided we can
generate Casimir functions. That is, if we can
solve the PDEs (9). Unfortunately, the solvability
of the latter imposes a serious constraint on the
dissipation structure of the system. Indeed, it is
possible to show (see (van der Schaft, 2000)) that
(9) are equivalent to

J∇C = −g, R∇C = 0. (18)

The second condition clearly implies that

R∇xΦ(C(x) − ζ) = 0, (19)

that, together with (11), indicates that energy
cannot be shaped for those coordinates that are
affected by physical damping. In (Ortega et al.,
2001) we referred to this restriction as dissipa-
tion obstacle. This obstruction is intrinsic, in the
sense that it is determined only by the damping
interconnection structure and is independent of
the actual value of the damping elements.

From the first equation in (9), assuming for sim-
plicity that F is full rank, we get ∇C = F−⊤g,
which replaced in the second equation of (18)
gives RF−⊤g = 0. This is a necessary condition
for the existence of Casimirs, hence if the system
does not satisfy it their energy function cannot be
shaped via CbI. In order to relate with forthcom-
ing derivations it is convenient to obtain another
necessary condition for Casimirs. For, we consider
the second equation in (18) for which we have

R∇C = 0 ⇔ F ∇C = −F⊤∇C,

which combined with the second equation in (9)
and the second equation of (18) yields

RF−1g = 0. (20)

EBC also imposes a restriction on the dissipation.
Indeed, evaluating (15) at x = x⋆ we conclude
that û⊤

EB
(x⋆)g

⊤(x⋆)∇H(x⋆) = 0. This means that
the power extracted from the source should be
zero at the equilibrium. On the other hand, evalu-
ating the power–balance equation (2) at x = x⋆ we
conclude that R(x⋆)∇H(x⋆) = 0 must be satis-
fied. Similarly to CbI, the latter condition restricts
the set of assignable Lyapunov–energy functions.
Indeed, if we impose the stability condition x⋆ =
arg minHd(x), which implies that ∇Ha(x⋆) =
−∇H(x⋆), we have that the Lyapunov–energy
functions assignable via EBC must satisfy

R(x⋆)∇Ha(x⋆) = 0, (21)

which should be compared to (19) (that, besides
being evaluated for all x, applies to all assignable
energy functions W , whether or not they qualify
as Lyapunov functions.)

Basic IDA–PBC, on the other hand, does not
impose any a priori restriction on the dissipation.
Indeed, from the derivations of the previous sub-
section we concluded that EBC had the additional
constraint ∇H⊤F∇H = ∇H⊤

d F∇Hd—that is,
the dissipated power should remain invariant un-
der the action of the control. Some simple calcu-
lations prove that the latter is equivalent to

(2∇H + ∇Ha)⊤R∇Ha = 0.

Evaluating the expression at the equilibrium and
enforcing the stability requirement we recover
(21).
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3. GENERATING NEW CYCLO–PASSIVITY
PROPERTIES

To overcome the dissipation obstacle we propose
in this section to exploit the non–uniqueness of the
PH representation to generate new cyclo–passive
outputs. More precisely, we will look for full rank
matrices Fd : R

n → R
n×n, with

Fd(x) + F⊤

d (x) ≤ 0, (22)

and storage functions HPS : R
n → R such that

F (x)∇H(x) = Fd(x)∇HPS(x). (23)

It is clear that, if (22) and (23) hold, then the PH
system with port variables (u, g⊤∇HPS) will be
cyclo–passive with storage function HPS. It turns
out that g⊤∇HPS is not adequate to overcome
the dissipation obstacle and another cyclo–passive
output—that, being related with the power shap-
ing procedure of (Ortega et al., 2003), we call
yPS—must be generated. Interestingly, we also
prove that in the single input case a necessary
and sufficient condition for the new cyclo–passive
output yPS to be equal to the “natural” output
g⊤∇HPS is precisely the absence of the dissipation
obstacle.

3.1 Construction of yPS

The procedure to identify the new passive outputs
is contained in the following proposition, which
requires Fd to be full rank and relies on a direct
application of Poincare’s Lemma. 4

Proposition 3. For all solutions Fd of the PDE

∇
(
F−1

d F∇H
)

=
[
∇

(
F−1

d F∇H
)]⊤

, (24)

verifying (22) there exists a storage function HPS

such that the PH system

Σ(u,yPS)

{
ẋ = F (x)∇H(x) + g(x)u

yPS = −g⊤(x)F−⊤

d (x)[F (x)∇H(x) + g(x)u]
(25)

satisfies the cyclo–passivity inequality

ḢPS ≤ u⊤yPS (26)

Remark 2. Under the assumption that F is full
rank we obtain a trivial solution of (24) setting
Fd = F . In this case, Hd = H and we obtain the
new power–balance equation

Ḣ = ẋ⊤F−1ẋ + u⊤yPS.

Comparing with (2) we see that the new passive
output is obtained swapping the damping—as
first observed in (Jeltsema et al., 2004).

4 Poincare’s Lemma: Given f : R
n → R

n, f ∈ C1. There

exists ψ : R
n → R such that ∇ψ = f if and only if

∇f = (∇f)⊤.

Remark 3. The construction proposed in (Ortega
et al., 2003) for power–shaping can be used also
here to provide solutions of (24), provided F is
full rank. Namely, it is easy to show that for all
matrices M : R

n → R
n×n, with M(x) = M⊤(x)

and all λ ∈ R, such that

M̃(x)
△
=

1

2
[(∇2H(x))M(x)+∇(M(x)∇H(x))+2λIn]

is full rank, F−1
d = M̃F−1 solves (24). The

resulting storage function being HPS = λH +
(∇H)⊤M∇H.

4. CONTROL BY INTERCONNECTION
WITH Σ(U,YPS) AND IDA–PBC

In this section we apply CbI to the new PH
system Σ(u,yPS) and show that, in this way, we
can shape even the coordinates where dissipation
is present. More precisely, we will remove the
second condition for existence of Casimirs in (9),
obviating the dissipation obstacle (19). Addition-
ally, we will show that these new conditions for
CbI ensures a solution to the matching equation
of IDA–PBC (with modified interconnection and
damping structure).

4.1 CbI with Σ(u,yPS) Overcomes the Dissipation

Obstacle

Proposition 4. Assume the PDE (24) admits a
solution Fd verifying (22) and such that

Fd∇C = −g, (27)

for some vector function C : R
n → R

m. Con-
sider the PH system (25) coupled with the PH
controller Σc (5) through the power–preserving
interconnection subsystem

ΣPS

I :

{ [
u

uc

]

=

[
0 −1
1 0

] [
yPS
yc

]

+

[
v

0

]

. (28)

Then, for all functions Φ : R
m → R, the following

cyclo–passivity inequality is satisfied

ẆPS ≤ v⊤y, (29)

where the storage function WPS : R
n ×R

m → R is
defined as

WPS(x, ζ)
△
= HPS(x) + Hc(ζ) + Φ(C(x) − ζ), (30)

with HPS =
∫

(F−1
d F∇H)dx.

Remark 4. The key difference between Proposi-
tions 1 and 4 is that the second condition for
generation of Casimirs in the former, namely
g⊤∇C = 0, is conspicuously absent in the latter.
As pointed out in Subsection 2.4 if both conditions
in (9) are satisfied then the dissipation obstacle
condition for CbI with Σ(u,y) (19) appears—see
also (20). This restriction is not imposed in CbI
with Σ(u,yPS).
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4.2 CbI with Σ(u,yPS) ⇒ IDA–PBC

Similarly to CbI with Σ(u,y), CbI with Σ(u,yPS) also
admits a static state feedback realization. Now,
the resulting control law and storage function
are solutions of the matching equation of IDA–
PBC. More precisely, the conditions (24) and (27)
of Proposition 4 ensure the existence of a static
state–feedback, ûIDA : R

n → R
m and a storage

function Hd, such that the matching condition of
IDA–PBC (Ortega and Garćıa-Canseco, 2004)

F∇H + gûIDA = Fd∇Hd (31)

is satisfied. To prove this fact note that, using (24)
(which implies (23)) and (27) we can rewrite (31)
as

Fd(∇HPS −∇CûIDA) = Fd∇Hd.

For all functions Hc : R
m → R, this equation is

satisfied selecting

ûIDA(x) = −∇CHc(C(x)), Ha(x) = Hc(C(x)),

Hd(x) = HPS(x) + Ha(x).

As for the case of CbI with Σ(u,y), these expres-
sions result from the projection of the overall
system on the manifold ζ = C(x).

Remark 5. We have shown above that the con-
ditions for CbI with Σ(u,yPS) ensures a solution to
(31), however this does not imply that it generates
all solutions of this equation. Indeed, it is easy
to see that (31) may have solutions even though
F−1

d F∇H is not a gradient of some function—
as required by (24). In other words CbI with
Σ(u,yPS) ⇒ IDA–PBC but the converse is not
true. In the next section we will establish the
equivalence with Basic IDA–PBC using a state–
modulated interconnection.

5. STATE–MODULATED CBI WITH
Σ(U,YPS) ⇔ BASIC IDA–PBC

In this section we prove that using a state–
modulated interconnection, see (van der Schaft,
2000), we can further relax the condition for ex-
istence of Casimirs (27). We will, furthermore,
prove that the new condition is actually the
matching condition of Basic IDA–PBC, establish-
ing in this way the equivalence between the two
methods.

Proposition 5. Assume the PDE (24) admits a
solution Fd verifying (22) and such that

g⊥Fd∇C = 0, (32)

for some vector function C : R
n → R

m. Con-
sider the PH system (25) coupled with the PH

Fig. 2. Relationship between the different control
schemes.

controller Σc (5) through the state–modulated
power–preserving interconnection subsystem

ΣSM
I :

{ [
u

uc

]

=

[
0 −α(x)

α(x) 0

] [
yPS
yc

]

+

[
v

0

]

,

(33)
where α : R

n → R
m×m is defined as

α = −(g⊤g)−1g⊤Fd∇C. (34)

Then, for all functions Φ : R
m → R, the cyclo–

passivity inequality (29) with storage function
(30) is satisfied.

Corollary 1. There exists a function Ha that
solves the matching equation of Basic IDA–PBC,
i.e., a solution of the PDE (13), if and only if
there exists a Casimir function that solves (32)
for Fd = F .

6. CONCLUDING REMARKS

We have investigated in this paper the relation-
ships between CbI, EBC and the well–known
IDA–PBC—in its basic and general forms. We
have concentrated our attention on the ability of
the methods to shape the energy function and
the role of dissipation to fulfill this task. Energy–
shaping is, of course, the key step for the suc-
cessful application of PBC and, similarly to all
existing methods for nonlinear systems controller
(or observer) design, requires the solution of a
set of PDEs. In the case of CbI methods the
solutions of the PDEs are the Casimir functions C
and, eventually, Fd. On the other hand, for EBC
and IDA–PBC their solution directly provides the
“added” energy function Ha, with Fd a free pa-
rameter for IDA–PBC. The comparison between
the various methods has been done, precisely, on
the basis of these PDEs.

To enlarge the domain of application of CbI sev-
eral variations of the method have been considered—
all of them adopting the simple (m–th order)
nonlinear integrator controller subsystem Σc given
in (5)—and they are summarized, together with
the PDE to be solved, as follows:

– (CbI) System Σ(u,y) (1) with unitary feedback
interconnection ΣI (7). PDEs to be solved
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F∇C = −g, g⊤∇C = 0.

– (Basic CbI PS) System Σ(u,yPS) (25) with Fd = F

and unitary feedback interconnection ΣPS

I (28).
PDE to be solved

F∇C = −g.

– (CbI PS) System Σ(u,yPS) (25) with Fd 6= F and
unitary feedback interconnection ΣPS

I (28). PDEs
to be solved

Fd∇C = −g, ∇
(
F−1

d F∇H
)

=
[
∇

(
F−1

d F∇H
)]⊤

,

the latter with the constraint Fd + F⊤

d ≤ 0.

– (Basic CbI SM
PS

) System Σ(u,yPS) (25) with Fd =
F and state–modulated feedback interconnection
ΣSM

I (33). PDE to be solved

g⊥F∇C = 0.

– (CbI SM
PS

) System Σ(u,yPS) (25) with Fd 6= F

and state–modulated feedback interconnection
ΣSM

I (33). PDEs to be solved

g⊥Fd∇C = 0, ∇
(
F−1

d F∇H
)

=
[
∇

(
F−1

d F∇H
)]⊤

,

the latter with the constraint Fd + F⊤

d ≤ 0.

On the other hand, we have:

– (EBC) PDE to be solved

g⊥F∇Ha = 0, subject to (2∇H+∇Ha)⊤R∇Ha = 0.

– (Basic IDA–PBC) PDE to be solved

g⊥F∇Ha = 0.

– (IDA–PBC) PDE to be solved

g⊥[(Fd − F )∇H + Fd∇Ha] = 0.

The relationship between all these schemes is
summarized in Fig. 2.
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