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This work addresses a finite-horizon linear-quadratic optimal control problem for uncertain systems
driven by piecewise constant controls. The precise values of the system parameters are unknown, but
assumed to belong to a finite set, i.e., there exist only finitely many possible models for the plant. Uncer-
tainty is dealt within a min–max context, seeking the best control for the worst possible plant, in the
sense of some specified cost functional. The optimal control is derived using a multi-model version of the
method of Lagrange multipliers, which specifies the control in terms of a discrete-time Riccati equation
and an optimization problem over a simplex. A numerical algorithm for computing the optimal control is
proposed and tested by simulation.

Keywords: multi-model optimal control; min–max optimization; piecewise constant control; linear-
quadratic regulator (LQR).

1. Introduction

Multi-model dynamical systems arise in several areas of control, sometimes as a result of the uncer-
tainty in the system parameters and others when the original model is largely complicated and needs
to be divided into subsystems, each of which characterizes an important feature in some region of the
parameter or the state space. For this class of models the optimal control problem can be formulated
in such a way that an operation of maximization is taken over the set of uncertainties and an operation
of minimization is taken over the control strategies. This is known as a min–max optimal control prob-
lem (Boltyanski & Poznyak, 2011). In this approach, the original system model is replaced by a finite
set of dynamic models such that each model describes a particular uncertain case.

The multi-model min–max optimal control problem has been considered by several authors such
as Varga (1996), Poznyak et al. (2002), Azhmyakov et al. (2010), Besselmann et al. (2012), Ramirez &
Camacho (2002), Bemporad et al. (2003), to name a few. The purpose in these references is to obtain a
control signal u(·) which guarantees that the cost does not exceed the ‘best cost’ incurred by the plant
realizing the ‘worst parameters’.

For the continuous-time case, the min–max problem was solved by Poznyak et al. (2002) using the
so-called robust maximum principle. In addition, the multi-model control problem was studied from a
dynamic programming perspective, and a natural relationship between dynamic programming and the
robust maximum principle was established for a class of linear-quadratic (LQ) problems (Azhmyakov
et al., 2010).

In the discrete-time case, there exists an abundant series of works dealing with the min–max prob-
lem. These works can be mainly divided by the kind of disturbance that are taken into consideration.
Namely, additive or parametric. Among the authors that consider an additive disturbance we can men-
tion Bemporad et al. (2001), Sakizlis et al. (2004), Kerrigan & Maciejowski (2004), Alamo et al. (2005),
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Olaru & Ayerbe (2006), Alexis et al. (2014) and Rubagotti et al. (2014). On the other hand, the para-
metric disturbance case is treated in the works of Mu noz de la Pe na et al. (2005), Pistikopoulos et al.
(2009), Falugi et al. (2008), Kouramas et al. (2013) and Chang et al. (2014). In both cases (additive
or parametric disturbance), the cost functional is considered quadratic using a given p-norm (where
p usually takes the values 1 or ∞). In addition, all of them consider restrictions in both the control
input and the system state. All the aforementioned works are based on model predictive control (MPC)
techniques, where multi-parametric programming is the key tool, and most of them focus on reducing
the computational effort, leaving aside the analysis of necessary and/or sufficient conditions of optimal
trajectories. The reader is kindly directed to the above-mentioned works and references for a detailed
account about MPC.

The multi-model control problem is also relevant when the designer is not only concerned about
optimizing control effort, but it is interested in optimizing communication bandwidth as well. Band-
width optimization is common in applications belonging to the field of networked control systems,
where the controller is not completely dedicated to the plant or it does not have full access to the net-
work resources at every time (see, e.g., Yang, 2006; Hespanha et al., 2007). The communication con-
straint leads to the consideration of a particular set of admissible controls, given by piecewise constant
functions on the interval [t0, tN ], which, in general, are non-uniformly spaced in time. Non-uniformity
is motivated by the fact that, in terms of bandwidth optimization, a uniform sampling is not necessarily
a ‘good’ choice (Bini & Buttazzo, 2014). Non-uniform switching sequences also appear in the field of
compressed sampling (Candes & Wakin, 2008; Nagahara et al., 2012a; Bryan & Leise, 2013), where
there is a given number m of samples, which, in general, are also non-uniformly spaced in time. The
objective is to recover the full signal in the receptor side. This technique has shown to be promising in
band-limited networked control applications (Nagahara et al., 2012b).

As another motivating example, consider the case when the objective is to control a set consisting
of different instances or realizations of a generic plant (i.e., all models have the same mathematical
structure, but each realization has possibly different parameters). The target is to control all the systems
with only one control signal (a simultaneous control problem Saadatjoo et al., 2009). In this context,
the multi-model setting arises inherently and the min–max approach provides a reasonable criterion for
optimality.

Motivated by the applications described above, we restrict the control actions to the class of piece-
wise constant functions of time. We also assume that the sequence of switching times is known a priori,
inasmuch as the choice of the switching times can be carried out independently from the choice of the
control levels when performing bandwidth optimization (Skafidas & Nerode, 1998; Xu & Antsaklis,
2004).

The purpose of this paper is to derive an optimal min–max control strategy in an analytic fashion.
We depart from the numerically oriented MPC perspective and instead develop necessary conditions for
optimal trajectories in the form of an extended Lagrangian multiplier rule for the case when parametric
uncertainty belongs to a finite set, that is, when there is a finite set of possible models (see Remark 2.2).
The LQ optimal control problem is stated formally in Section 2. Motivated by the piecewise constant
nature of the control laws, the problem will be reformulated in a discrete-time context.

1.1 Main contribution

Theorem 3.1 in Section 3.2 states the solution to the LQ problem. Using convex analysis and gener-
alized gradients, a discrete-time extended Riccati equation is obtained. The equation is parametrized
by μ, a vector whose elements are convex multipliers for the costs incurred by the individual plants.
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To compute the optimal control, a maximization problem constrained to a finite-dimensional simplex
has to be solved for μ. Additionally, it is shown that a complementary slackness condition holds between
μ and the individual costs.

In Section 3.3, we propose a numerical algorithm to find μ and the corresponding optimal control.
This algorithm can be used in conjunction with MPC. It is based on the classical gradient with projection
approach, but the gradient is approximated using Kiefer–Wolfowitz algorithm (Poznyak, 2009). The
complementary slackness condition turns out to be critical in deciding a practical stopping criterion for
the numerical algorithm.

Finally, we present numerical examples illustrating the usefulness of Theorem 3.1, the feasibility of
the numerical algorithm and the soundness of the min–max paradigm when confronted to multi-models.

2. Problem formulation

Consider the following general continuous-time linear system with parametric uncertainty:

ẋ(t) = Aα(t)x(t) + Bα(t)u(t), x(t0) = x0, α ∈ A , t ∈ [t0, tN ], (2.1)

where x(t) ∈ R
n is the system state vector and u(t) ∈ R

m is the control input. The actual realization of the
system matrix and input matrix, Aα(t) and Bα(t), is unknown, but these are known to belong to finite set
which is indexed by α. In other words, equation (2.1) describes one realization taken out from a finite set
of possible systems. The index α is taken to be constant, but unknown, through all the process lifetime,
i.e., from t0 until tN . However, it is possible to compute the control iteratively over a receding horizon,
in an MPC fashion. This approach allows one to face problems where the parameters can change slowly
over the time. For a fixed α ∈ A , we will denote the solution of (2.1) by xα(t).

2.1 Admissible controls

The family of admissible controls takes a stepwise form. This is motivated by some applications in
networked control systems. For example, when passing through a digital band-limited communication
channel, the control input u may only take a finite number of changes (switches) on its levels over
the whole interval [t0, tN ]. Let the times at which these switches occur be given by a monotonically
increasing sequence1

δ = {t0, t1, . . . , tN−1}, (2.2)

where δ is bounded by tN . The set of admissible controls is given by

U δ
ad =

{
u : [t0, tN ] → R

m | u(t) =
N−1∑
k=0

χ[tk ,tk+1)(t)vk , tk ∈ δ, vk ∈ R
m, k = 0, . . . , N − 1

}
(2.3)

with

χ[tk ,tk+1)(t) =
{

1 if t ∈ [tk , tk+1),

0 otherwise

the characteristic function of the interval [tk , tk+1) and vk the value of u(t) when t ∈ [tk , tk+1). It is worth
mentioning that the switching sequences δ that are taken under consideration are non-uniform in general.

1 Note that, since the controller is updated at most N − 1 times, a reduction on N directly translates into a reduction of the
required bandwidth of the communication channel.
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The reason is that, regarding minimal bandwidth consumption, a uniform sampling is not always the
best choice (see, e.g., Bini & Buttazzo, 2014 and Remark 2.1).

2.2 Problem statement

Associated to (2.1), we consider the quadratic cost functional

Jα(u) = 1

2
xα(tN )�Gxα(tN ) + 1

2

∫ tN

t=0
(xα(t)�Q(t)xα(t) + u(t)�R(t)u(t)) dt, (2.4)

where the usual positivity conditions are assumed

G = G� � 0, Q(t) = Q(t)� � 0 and R(t) = R(t)� � εI (2.5)

for all t ∈ [t0, tN ] and some ε > 0.
The optimization problem consists in finding a control action u∗(·) ∈ U δ

ad that provides a ‘good’
behaviour for all systems from the given collection of models (2.1), including the ‘worst’ case. The
resulting control strategy is applied to (2.1), regardless of the actual α-realization. We state this formally
as the min–max optimization problem

minimize J(u),

subject to u(·) ∈ U δ
ad,

(2.6)

where J(u) = maxα∈A Jα(u) subject to (2.1) (see, e.g., Azhmyakov et al., 2010; Boltyanski & Poznyak,
2011).

Remark 2.1 All admissible controls u(·) clearly depend on the switching sequence δ but, as it is noted
in Skafidas & Nerode (1998) and Xu & Antsaklis (2004), it is possible to perform optimization in two
stages: First, seek an optimal switching sequence δ and then look for an optimal control input for the
given switching sequence. We focus on the second stage, so it is assumed that the switching sequence
is given a priori.

Remark 2.2 It is worth mentioning that, for the case when the set of considered uncertainties is a
compact polyhedron (i.e., we have a infinite number of possible realizations of (2.1)), and the map
α �→ Jα(u) is convex, the problem is reduced to study only those uncertainties that belongs to the set of
extreme points of the polyhedron, i.e., its vertices (Bazaraa et al., 2006, Theorem 3.4.7).

Remark 2.3 As mentioned above, there exist mainly two approaches of the min–max control problem,
depending on the kind of disturbance. The first approach considers an additive disturbance of the form

ẋ = Ax(t) + Bu(t) + w(t),

whereas the second one deals with parametric disturbances of the form

ẋ = Aα(t)x(t) + Bα(t)u(t).

Although both problems have been dealt with before, the parametric disturbed case is still a research
focus, being more difficult to solve than the additive parametric case (Kouramas et al., 2013).
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The stepwise nature of the control motivates the use of a discrete-time approach, using δ as the
sampling time-sequence. Indeed, the problem is finite-dimensional, since it is only necessary to find N
values of the control signal. Now, let

v = [v�
0 · · · v�

N−1]� ∈ R
mN (2.7)

be the decision vector and allow us construct the vector xα , obtained by appending each point of the
resulting discrete-time orbit,

xα = [xα�
1 xα�

2 · · · xα�
N ]� ∈ R

nN .

The discrete-time representation of problem (2.6) is thus

minimize J̄(v, x, x0), (2.8)

where the discrete costs are given by

J̄(v, x, x0) = max
α∈A

J̄α(v, xα , x0)

subject to
xα

k+1 = Φα
k xα

k + Γ α
k vk , xα

0 = x0, α ∈ A , k = 0, . . . , N − 1

with

Jα(v, xα , x0) = 1

2
xα�

N Gxα
N + 1

2

N−1∑
k=0

[xα�
k Πα

k xα
k + 2xα�

k Θα�
k vk + v�

k Ψ α
k vk]. (2.9)

To alleviate the notation, we will denote the cost functional J̄α(v, xα , x0) simply by J̄α(v, xα), bearing in
mind the dependence of the initial condition in the cost.2

It is straightforward to verify that the weighting matrices in (2.9) are

Γ α(t, tk) :=
∫ t

tk

Φα(t, τ)Bα(τ ) dτ ∈ R
n×m,

Πα
k :=

∫ tk+1

tk

Φα(t, tk)
�Q(t)Φα(t, tk) dt ∈ R

n×n,

Θα
k :=

∫ tk+1

tk

Γ α(t, tk)
�Q(t)Φα(t, tk) dt ∈ R

m×n,

Ψ α
k :=

∫ tk+1

tk

(Γ α(t, tk)
�Q(t)Γ α(t, tk) + R(t)) dt ∈ R

m×m,

Γ α
k := Γ α(tk+1, tk)

and Φα
k := Φα(tk+1, tk) with Φα(t, t0) the state transition matrix for the α-system (2.1). Notice that

Πα
k = Πα�

k � 0 and Ψ α
k = Ψ α�

k > 0 for all k = 0, . . . , N − 1.

2 Moreover, we will write in (3.3) the cost as a function of v only, to reflect the fact that xα depends on v through the constraint
equations.
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3. Solution to the min–max problem

3.1 Multi-model method of Lagrange multipliers

Recall that, in the classical discrete-time LQ problem (i.e., when A is a singleton, A = {1}), the optimal
control can be obtained using the Lagrange multipliers framework (Ogata, 1995, ch. 8). The following
lemma states that the framework is still valid, mutatis mutandis, for the discrete-time multi-model case.

Lemma 3.1 Let (v∗, x∗) be an optimal pair solution of (2.8), then the following conditions are satisfied:

0 ∈ conv{∇vLα(v∗, x∗, λα) : α ∈ I(v∗)}, (3.1a)

0 = ∇xLα(v∗, x∗, λα) for all α ∈ I(v∗), (3.1b)

0 = ∇λLα(v∗, x∗, λα) for all α ∈ I(v∗), (3.1c)

where conv denotes convex closure and Lα : R
mN × R

nN × R
nN → R denotes the Lagrangian of the

problem, that is,
Lα(v, xα , λα) = J̄α(v, xα) + λα�gα(v, xα) (3.2)

with

gα(v, xα) = [gα�
0 (v, xα), . . . , gα�

N−1(v, xα)]� ∈ R
nN ,

gα
k (v, xα) = −xα

k+1 + Φα
k xα

k + Γ α
k vk .

I(v) denotes the set of indices where J̄α reaches the maximum value (with v fixed), i.e.,

I(v) = {α ∈ A : J̄α(v, xα) = J̄(v, x)}.
Proof. In order to make the proof easier to follow, we introduce the function

Wα(v) := J̄α(v, xα(v)), (3.3)

where we are exploiting the fact that xα is a function of v through the restriction equations. Indeed, is
easy to see that for each v, xα is uniquely defined by the constraint gα(v, xα) = 0. Moreover, Wα(·) is
again convex since it is the composition of an affine and a convex function.

Our immediate goal is to derive necessary conditions for optimality of the problem

minimize: J̄(v, x),

which is equivalent to
minimize W(v) (3.4)

with W(v) = maxα∈A Wα(v). Note that W is obtained by choosing the maximum among a finite set of
functions, so it is in general a non-smooth function, even in the case where each Wα(v) is smooth.

Is well know (Mäkelä & Neittaanmäki, 1992, p. 70) that a necessary condition for optimality of (3.4)
is 0 ∈ ∂cW(v∗), where ∂cW denotes the convex subdifferential of W at v∗.3 The subdifferential of the
max function has been reported in the literature (see, e.g., Mäkelä & Neittaanmäki, 1992, p. 49) and it is
known to satisfy ∂cW(v) = conv{∇Wα(v) : α ∈ I(v)}, where I(v) = {α ∈ A : Wα(v) = W(v)} (i.e., I(v)

3 Note that W is the maximum of a finite set of convex functions, which is again convex.
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is the set of indices where the maximum is reached). Thus, we have the following necessary condition
for optimality

0 ∈ conv{∇Wα(v∗) : α ∈ I(v∗)}.

It is worth stressing the fact that the right-hand side does not involve all the possible α-realizations of
the uncertain plant. Only those plants for which the maximum is reached play a role in the optimization
procedure. In the following section, we propose a method for finding these extreme plants (see also
Remark 3.2).

From the definition of Wα , we have

∇Wα(v) = ∇vJ̄α(v, xα) + ∇xJ̄(v, xα(v))∇xα(v),

where we defined the gradient of a map F : R
n → R

m as

∇F(x) =

⎡
⎢⎢⎢⎢⎣

∂F1(x)

∂x1
· · · ∂F1(x)

∂xn
...

. . .
...

∂Fm(x)

∂x1
· · · ∂Fm(x)

∂xn

⎤
⎥⎥⎥⎥⎦ ∈ R

m×n

(i.e., we adhere to the convention that the gradient of a scalar function is as a row vector).
Since the plant is a well-defined system, there exist at least one pair (v̄, x̄α) for which gα(v̄, x̄α) = 0.

Furthermore,

∇xgα(v, xα) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−In 0 0 · · · 0 0
Φα

1 −In 0 · · · 0 0
0 Φα

2 −In · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −In 0
0 0 0 · · · Φα

N−1 −In

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

is an invertible matrix, so it is possible to apply the implicit function theorem, write xα as a function of
v and write the gradient

∇xα(v) = −[∇xgα(v, xα(v))]−1∇vgα(v, xα(v)).

This results in

∇Wα(v) = ∇vJ̄α(v, xα(v)) − ∇xJ̄α(v, xα(v))[∇xgα(v, xα(v))]−1∇vgα(v, xα(v)).

Now, define λα� := −∇xJ̄α(v, xα(v))[∇xgα(v, xα(v))]−1 ∈ R
1×nN , write the Lagrangian as in (3.2) and

immediately obtain (3.1a). From the definition of λα , we have

0 = ∇xJ̄α(v, xα(v)) + λα�∇vgα(v, xα(v)),

which is the same as (3.1b). Finally, note that (3.1c) is a restatement of the constraints. �
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3.2 Extended Riccati equation, complementary slackness

Throughout the rest of this section, we will work simultaneously with all α-realizations. In order to
make the presentation clearer, we introduce the following extended matrices:

G(μ) = diag{μ1G, . . . , μ|A |G} ∈ R
n|A |×n|A |,

Πk(μ) = diag{μ1Π
1
k , . . . , μ|A |Π

|A |
k } ∈ R

n|A |×n|A |,

Θk(μ) = [μ1Θ
1
k · · · μ|A |Θ

|A |
k ] ∈ R

m×n|A |,

Ψ k(μ) =
|A |∑
α=1

μαΨ α
k ∈ R

m×m,

Φk = diag{Φ1
k , . . . , Φ |A |

k } ∈ R
n|A |×n|A |,

Γ k = [Γ 1�
k Γ 2�

k · · · Γ
|A |�

k ]� ∈ R
n|A |×m,

M(μ∗) = diag(μ∗
1In, . . . , μ∗

|A |In),

where |A | is the cardinality of A . Note that the vector μ (formally defined below as an element of
a simplex) only intervenes in the matrices that are related to the cost. Also, note that the symmetry
and positive (semi) definiteness of G, Π k

α and Ψ k
α are inherited by G(μ), Πk(μ) and Ψ k(μ), for all

k ∈ 0, . . . , N − 1 and for all μ in the simplex defined below.

Definition 3.1 The simplex of dimension |A | − 1 is the set

S |A | =
{

μ ∈ R
|A | :

∑
α∈A

μα = 1, μα � 0, for all α ∈ A

}
.

Let us now define the extended vectors

xk =

⎡
⎢⎣

x1
k
...

x|A |
k

⎤
⎥⎦ ∈ R

n|A | and Λk(μ
∗) =

⎡
⎢⎣

μ∗
1λ

1
k

...
μ∗

|A |λ
|A |
k

⎤
⎥⎦ ∈ R

n|A |,

so that we can formulate the main contribution of this work. The result can be interpreted as a discrete-
time version of the robust maximum principle developed by one of the authors in Boltyanski & Poznyak
(2011) and applied to the LQ problem.

Theorem 3.1 Consider the multi-model linear system (2.1) and the cost functional (2.4) subject to the
usual positivity assumptions (2.5). Let δ be a switching sequence given a priori and of the form (2.2)
and let U δ

ad be the set of admissible controllers defined by (2.3). The control u∗∗(·) ∈ U δ
ad that solves the

min–max problem (2.6) is given by

u∗∗(t) := u∗(t, μ∗) =
N−1∑
k=0

χ[tk ,tk+1)(t)v
∗
k(μ

∗), tk ∈ δ,

v∗
k(μ) = −(Ψ k(μ) + Γ �

k Pk+1(μ)Γ k)
−1(Θk(μ) + Γ �

k Pk+1(μ)Φk)xk ,

(3.5)
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where the boldface matrices were defined previously, except for Pk(μ), which is defined implicitly as
the positive-definite solution of the discrete-time Riccati equation

Pk(μ) = Πk(μ) + Φ�
k Pk+1(μ)Φk − (Θk(μ) + Γ �

k Pk+1(μ)Φk)
�

× (Ψ k(μ) + Γ �
k Pk+1(μ)Γ k)

−1(Θk(μ) + Γ �
k Pk+1(μ)Φk) (3.6a)

with boundary condition
PN (μ) = G(μ). (3.6b)

The optimal vector μ∗ is the solution of

max
μ∈S |A |

1

2
x�

0 P0(μ)x0. (3.7)

Moreover, the complementary slackness condition

μ∗
α[Jα(u∗∗) − J(u∗∗)] = 0 (3.8)

is satisfied for every α ∈ A .

Remark 3.1 Equations (3.5) and (3.6) define the solution of a classical discrete-time LQ problem for
the extended system xk+1 = Φkxk + Γ kvk , the only difference being the dependence that the matrices
have on μ. In view of this observation and the structure of the extended cost matrices, one concludes
that the cost for the extended system is a convex combination of the individual costs. In symbols,

1

2
x�

N G(μ)xN + 1

2

N−1∑
k=0

(x�
k Πk(μ)xk + 2xkΘk(μ)�vk + v�

k Ψ k(μ)vk) =
∑
α∈A

μα J̄α(v, xα).

Remark 3.2 The complementarity slackness condition reveals that only the extreme plants (those for
which the maximum is attained) play a role in the computation of the optimal control. Indeed, the
optimal vector μ∗ acts as an indicator for the set of extreme plants (having non-zero elements in the
α-coordinates if, and only if, the corresponding plant is extreme).

Proof of Theorem 3.1. It has already been established that the continuous-time problem (2.6) is equiv-
alent to the discrete-time problem (2.8). Thus, our problem consists in minimizing J̄(v, x). Lemma 3.1
states that the optimal control pair must satisfy (3.1), which translates to

0 =
∑

α∈I(v∗)

{μ∗
α(∇vJ̄α(v∗, x∗) + λα�∇vgα(v∗, x∗))} (3.9a)

for some μ∗ ∈ S |I(v∗)| (i.e., such that
∑

α∈I(v∗) μ∗
α = 1 and μ∗

α � 0) and

0 = ∇xJ̄α(v∗, x∗) + λα�∇xgα(v∗, x∗), (3.9b)

0 = gα(v∗, x∗) (3.9c)

for all α ∈ I(v∗). Allow us to embed μ∗ in the larger simplex S |A | by putting zeros in the α /∈ I(v∗)-
entries, so the new vector μ∗ ∈ S |A | acts an indicator for the extreme plants.
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Computing (3.9) explicitly gives

0 =
∑
α∈A

μ∗
α(Ψ α

k v∗
k + Θα

k xα∗
k + Γ α�

k λα
k+1),

0 = μ∗
α[Πα

k xα∗
k + Θα�

k v∗
k + Φ�

k λα
k+1 − λα

k ],

0 = μ∗
α[λN − Gxα∗

N ],

0 = μ∗
α[−xα∗

k+1 + Φα
k xα∗

k + Γ α
k v∗

k ]

(3.10)

for all k = 0, . . . , N − 1. In order to make the notation more compact, we will make use of the block
matrices defined above. The optimality conditions (3.10) can now be rewritten as

0 = Ψ k(μ
∗)v∗

k + Θk(μ
∗)x∗

k + Γ �
k Λk+1(μ

∗), (3.11a)

0 = Πk(μ
∗)x∗

k + Θk(μ
∗)�v∗

k + Φ�
k Λk+1(μ

∗) − Λk(μ
∗), (3.11b)

0 = G(μ∗)x∗
N − ΛN (μ∗), (3.11c)

0 = M(μ∗)[−x∗
k+1 + Φkx∗

k + Γ kv∗
k ] (3.11d)

for all k = 0, . . . , N − 1. Note that these equations are similar to the classical discrete-time LQ optimal-
ity equations of an n|A |-dimensional linear system parametrized by μ∗ (Ogata, 1995, p. 582). To obtain
the optimal control v∗, we simply follow the classical discrete-time approach (only the main steps are
reported since the approach is well known).

Recall that it is always possible to write the adjoint variable Λ(μ∗) as a linear function of the
(extended) state x∗, i.e., as Λk(μ

∗) = Pk(μ
∗)x∗

k . It is straightforward to verify that, for Λk(μ
∗) to

satisfy (3.11), Pk(μ
∗) must be the (positive semi-definite) solution of the μ∗-parametrized Riccati

equation (3.6). The optimal control then takes the form

v∗
k(μ

∗) = −(Ψ k(μ
∗) + Γ �

k Pk+1(μ
∗)Γ k)

−1(Θk(μ
∗) + Γ �

k Pk+1(μ
∗)Φk)x∗

k

(see Ogata, 1995, Chapter 8 for a detailed development of the classical discrete-time LQ problem).
It is not difficult to prove that the optimal cost of the extended system is equal to 1

2 x�
0 Pk(μ

∗)x0

(see Ogata, 1995, p. 575) so, according to Remark 3.1,

∑
α∈A

μ∗
α J̄α(v∗(μ∗), xα∗) = 1

2
x�

0 Pk(μ
∗)x0. (3.12)

On the other hand, according to Lemma A.1 in the Appendix, this vector also satisfies

μ∗ = arg maxμ∈S |A |
∑
α∈A

μα J̄α(v∗(μ), xα∗). (3.13)

Statement (3.7) now follows directly from (3.12) and (3.13).
Lemma A.1 also implies that the components of μ∗ will be different from zero at the α-positions

where Jα(u∗∗) = J(u∗∗) (i.e., where the maximum is attained) and will be zero otherwise. This fact is
equivalent to the complementary slackness condition (3.8). �

Remark 3.3 Note from (3.7) that μ∗ depends on the initial conditions and the system parameters only
(not on the whole state trajectory). This allow us to separate the optimization problem in two simpler
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subproblems. Namely, the first part consists in solving the μ-parametrized Riccati equation (3.6). The
second part consists in finding the solution μ∗ of (3.7). Both stages can be accomplished off-line.

3.3 Numerical algorithm

Theorem 3.1 provides the feedback control equations in terms of the parameters of every α-model and
μ∗. Thus, in order to determine the control law completely, it is necessary to solve (3.7). Gradient-based
algorithms are widely used for numerical optimization. These are methods where the search directions
are defined by the gradient of a target function at the current iteration point. Computing the gradient of
the performance index 1

2 x�
0 P0(μ)x0 directly is a challenging task, mainly because of the recursion in the

Riccati equation (3.6). To circumvent this problem, we propose to use an approximation of the gradient
in combination with a projection algorithm that guarantees that μ belongs to S |A |.

Let f (μ) ∈ R be a convex cost function to be minimized. The classical gradient with projection
algorithm for finding the minimum is given by the recursion (Levitin & Polyak, 1965)

μj = Proj[μj−1 − γj∇f (μj−1)]S |A | , (3.14)

where Proj[·]S |A | refers to the projection of a point in R
|A | into the set S |A |, i.e.,

x∗ = Proj[y]B if and only if x∗ = arg minx∈B‖y − x‖
and γj is a positive and small number called the step-size,4 The convexity of f (·) implies that f (μj) →
f (μ∗), as j → ∞ where μ∗ is the minimum of f constrained to μ∗ ∈ S |A | (see Levitin & Polyak, 1965).
Equivalently, for all ε1 > 0, there exists an Nε1 > 0 such that

|f (μj) − f (μ∗)| < ε1

for all j � Nε1 . As mentioned above, we will approximate ∇f (μj−1) in (3.14). For simplicity, we will
use the classical Kiefer–Wolfowitz approximation,

Ym(μj−1) = 1

2βm

|A |∑
i=1

[f (μj−1 + βmei) − f (μj−1 − βmei)]ei ∈ R
|A |, (3.15)

where the sequence βm vanishes as m → ∞ and the vector ei represents the ith element of the canonical
basis in R

|A | (see Chin, 1997 for a comparative study of gradient approximations).

Lemma 3.2 Consider the approximation (3.15). If the gradient f (·) exists at μj−1 and limm→∞ βm = 0,
then the limit of Ym(μj−1) as m → ∞ is equal to the gradient of f (·) at μj−1.

Proof. The proof is in Poznyak (2009) but we briefly repeat it here for completeness. Since f is differ-
entiable at μj−1, we can write the first order approximation of f (μj−1 + βmei) at μj−1 as

f (μj−1 + βmei) = f (μj−1) + 〈∇f (μj−1), βmei〉 + o(βm),

where o(·) satisfies

lim
x→0

∣∣∣∣o(x)

x

∣∣∣∣= 0.

4 Actually, there is a large variety of possibilities for choosing the step-size γj. See, e.g. Bertsekas (1999).

1167

 at C
entro de Investigacion y de E

studios A
vanzados del Instituto Politecnico N

 on January 7, 2017
http://im

am
ci.oxfordjournals.org/

D
ow

nloaded from
 

http://imamci.oxfordjournals.org/


F. A. MIRANDA ET AL.

Representing f (μj−1 − βmei) in the corresponding fashion gives

Ym(μj−1) = 1

βm

|A |∑
i=1

[〈∇f (μj−1), βmei〉 + o(βm)]ei

=
|A |∑
i=1

[
∂f (μj−1)

∂μ
j−1
i

+ o(βm)

βm

]
ei

= ∇f (μj−1) + o(βm)

βm

|A |∑
i=1

ei.

Taking the limit as m → ∞ gives the desired result. �

With the convergence of the recursion (3.15) assured, it seems natural to adjust the classical gradient
with projection algorithm as follows.

Proposition 3.1 Consider the recursion

μj = Proj[μj−1 − γjYj(μ
j−1)]S |A | (3.16)

with f (·) a convex (and therefore continuous) function (Rockafellar, 1970, Corollary 10.1.1). Then,
limj→∞ f (μj) = f (μ∗).

Proof. It follows from Lemma 3.2 that ∇f (μj−1) = limm→∞ Ym(μj−1). By substituting this expression
in (3.14), we obtain

μj = Proj
[
μj−1 − γj lim

m→∞ Ym(μj−1)
]

S |A |
= lim

m→∞ Proj[μj−1 − γjYm(μj−1)]S |A | , (3.17)

where the second equation follows from the continuity of Proj[·]S |A | . Let us define the term

μj,m := Proj[μj−1 − γjYm(μj−1)]S |A | .

Then we can write (3.17) as μj = limm→∞ μj,m and f (μj) = limm→∞ f (μj,m), where we have used again
a continuity argument to compute the second limit. Thus, for all ε2 > 0, there exists an Mε2 > 0 such that

|f (μj,m) − f (μj)| < ε2

for all m � Mε2 . Finally, for every ε > 0, we can choose ε1 > 0 and ε2 > 0 such that ε = ε1 + ε2. It is
then straightforward to verify that

|f (μj,m) − f (μ∗)| = |f (μj,m) − f (μ∗) ± f (μj)|
� |f (μj,m) − f (μj)| + |f (μj) − f (μ∗)|
< ε1 + ε2 = ε

for all j, m � max{Nε1 , Mε2}. Consequently, for the sequence μj,j = μj we have

|f (μj,j) − f (μ∗)| < ε for all j � max{Nε1 , Mε2}.
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The convergence of the recursion (3.16) has been proved. �

In order to apply the recursion (3.16) to our optimization problem, it suffices to set f (μ) as f (μ) =
−x�

0 P0(μ)x0 and specify a stop criterion. The latter can be obtained from the complementary slackness
condition (3.8) in Theorem 3.1. More precisely, the fact that, at the optimal value μ∗, the components
μ∗

α that are different from zero must have equal associated costs can be used to determine whether or not
an optimal μ∗ has been found. In a real implementation, however, the slackness condition is impossible
to achieve exactly, due to finite machine precision. For this reason, we introduce a threshold value ε 
 1
for which the stop condition is

|μj
α[Jα(u∗(μj−1)) − J(u∗(μj−1))]| < ε, (3.18)

for all α ∈ A and for some j ∈ N sufficiently large.
The procedure for computing the optimal control law for problem (2.6) is summarized in the fol-

lowing algorithm:

1. Fix μ0 ∈ S |A | and set j = 1.

2. Compute the matrix P0(μ
j−1) as the positive-definite solution of (3.6).

3. Make one step through the recursion (3.16) by computing the term μj−1 − γjYj(μ
j−1) and pro-

jecting on the simplex S |A |.

4. Compute the product μj
α[Jα(u∗(μj)) − J(u∗(μj))] for every α in A and verify the stop condition

(3.18)5. If True, go to step 5; else increase j by one and go to step 2.

5. Compute the optimal control law as in (3.5).

4. Numerical examples

Example 4.1 Consider the following multi-model system

ẋ = Aαx + Bαu, x0 = [3 − 2]� (4.1)

with α ∈ A = {1, 2},

A1 =
[

0 1
−1 −1

]
, B1 =

[
0
1

]
, A2 = 10A1, B2 = B1.

Also, consider the cost functional

Jα(u) = 1

2
xα�(10)Gxα(10) +

∫ 10

0
(xα�Qxα + u�Ru) dt,

G =
[

5 0
0 5

]
, Q =

[
50 0
0 10

]
, R = 10.

(4.2)

5 At the expense of a large computational burden, the term J(u∗(μj)) can be obtained by integrating the system equa-
tions numerically. Alternatively, J(u∗(μj)) can be approximated by 1

2 x�
0 P0(μ

j)x0 (notice that limj→∞(J(u∗(μj)) − 1
2 x�

0
P0(μ

j)x0) = 0).
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Fig. 1. Optimal min–max control.

Note that the worst dominant plant (i.e., the plant whose individual cost Jαw is always greater than
the other costs Jα , for all α ∈ A \ {αw} and for all admissible controls) is given by α = 1 (the slowest
plant). We expected the proposed algorithm to be able to identify it. In this case, we consider a random
switching sequence

δ = δ1 ∪ δ2,

δ1 = [0 0.82 1.73 1.86 2.78 3.42 3.52 3.80 4.35],

δ2 = [5.31 6.28 6.44 7.42 8.38 8.87 9.68 9.83 10].

Setting ε = 2 × 10−5 and applying the algorithm described in Section 3.3, one obtains the optimal
vector

μ∗ = [1 0]�.

After substituting the optimal parameter in (3.5), the optimal control u∗ is obtained. Such control is
plotted in Fig. 1. The optimal min–max cost J(u∗∗) is equal to 139.1381. The individual costs that
result from applying the optimal min–max control u∗∗(·) to every α-system independently are J1(u∗∗) =
139.1381 and J2(u∗∗) = 20.7546, which confirms that the worst plant was identified correctly. Finally,
the state trajectories for each system are presented in Fig. 2(a and b).

Example 4.2 Consider now the linear multi-model system

ẋα = Aαxα + Bαu,

Aα =
[

0 1
(α − 0.9) sign(1.1 − α) −(4 − α)2

]
, Bα =

[
0√
α

]
, x0 =

[−5
3

] (4.3)
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Fig. 2. Time trajectories for the system (4.1) with α = 1, 2. (a) α = 1 and (b) α = 2.

with α ∈ A = {1, 2, 3, 4} and the cost functional

J(u) = 1

2
xα�Gxα +

∫ 20

0
(xα�Qxα + u�Ru) dt,

G =
[

5 0
0 5

]
, Q =

[
50 0
0 10

]
, R = 10.

(4.4)

In this case, we consider a random switching sequence δ given by

δ1 = [0 0.82 1.73 1.86 2.78 3.42 3.52 3.80 4.35],

δ2 = [5.31 6.28 6.44 7.42 8.38 8.87 9.68 9.83 10.26],

δ3 = [11.18 11.98 12.94 13.60 13.64 14.49 15.43 16.11 16.87],

δ4 = [17.62 18.02 18.68 20.00 20.52 22.36 23.96 25.88 27.20],

δ5 = [27.28 28.98 30.86 32.22 33.74 35.24 36.04 37.36 40.00],

δ = ∪i=1,...,5δi.

Applying the algorithm described with ε = 5 × 10−3 gives

μ∗ = [0.4842 0.1842 0.1432 0.1884]�

(note that the model is unstable and marginally stable for α = 1 and α = 4, respectively). Figure 3 shows
the optimal control (3.5) after plugging in μ∗. The optimal min–max cost is equal to J(u∗∗) = 3688.1
and the individual costs are

J1(u∗∗) = 3688.1, J2(u∗∗) = 3688.1, J3(u∗∗) = 3688.1 and J4(u∗∗) = 3688.1. (4.5)

In this case, all the plants play a role in the optimal control and can be viewed as extreme plants in
the min–max sense. The min–max control strategy is well suited for the multi-model case in the sense
that, for every plant, an appropriate upper bound on the cost is ensured. For comparison purposes, we
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Fig. 3. Optimal min–max control, u∗∗.

Table 1 The costs that each plant incurs when subject
to uα∗, the optimal control for the α-system. Compare
with (4.5)

J1(u) J2(u) J3(u) J4(u)

u = u1∗ 2384.4 4900.0 7649.7 1.22 × 105

u = u2∗ 2.462 × 104 570.77 1526.7 6.465 × 104

u = u3∗ 3.889 × 104 1194.2 381.16 1.269 × 104

u = u4∗ 4.454 × 104 1749.6 691.35 485.76

have computed each control uα∗, where uα∗ is defined as the optimal control for the plant α. Next, we
have computed the cost that each plant incurs when subject to uα∗. All costs are shown in Table 1. It
can be seen that, for all uα∗, there is at least one plant that incurs a cost which is larger than J(u∗∗).
This supports the claim that the min–max is a reasonable criterion. Finally, the state trajectories for each
system are presented in Fig. 4.

Remark 4.1 From equation (3.16) it is easy to see that the computation time for μ∗ strongly depends
on the value of the parameter γj. In previous examples, a simple updating rule for γj was used. Namely,
we consider γj = 0.35/j and γj = 0.5/j for Examples 4.1 and 4.2, respectively. With these data, it took
about 50 iteration steps (1.708 s) to converge to μ∗ for Example 4.1, whereas it took about 184 iteration
steps (56.99 s) for Example 4.2. All simulations were carried out using Matlab R2011b over a PC with
an Intel i7 − 4770 processor at 3.4 GHz.

It is worth noting that previous time measurements give only a rough idea about the speed of the
algorithm, but in applications it would be better to look into adaptation techniques for the parameter
γj, such as Armijo’s rule (Bertsekas, 1976) or some other non-linear programming technique for the
programme (3.13).
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Fig. 4. Trajectories of (4.3) subject to u∗∗. (a) α = 1, (b) α = 2, (c) α = 3 and (d) α = 4.

5. Conclusions

By employing generalized gradients we have formulated a multi-model method of Lagrange multipliers.
When applied to the discrete-time min–max optimal control problem, the method leads to a Riccati
equation for an extended plant with a state vector obtained by aggregating the state of each individual
plant. This is in perfect analogy with the continuous-time solution (Boltyanski & Poznyak, 2011). The
Riccati equation is parametrized by μ, a member of a simplex whose elements determine the weight
assigned to the cost of each plant. Non-smooth analysis specifies μ as the solution of a maximization
problem over a simplex, thus completely characterizing the optimal solution. Non-smooth analysis also
leads to a complementary slackness condition on μ, which turns out to be useful when computing the
solution numerically.

Numerical experiments show the effectiveness of the min–max approach in the context of a multi-
model setting, in the sense that the cost of each plant is kept at a reasonable level. It is worth mention-
ing, however, that the resulting optimal control is essentially open-loop, since it depends on the state
trajectories of all the models, whether they are actually realized or not. The problem of obtaining a
state-feedback control thus remains open, but points the direction for continuing this line of research.
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Appendix

Lemma A.1 Consider the problem of finding the maximum element among a finite set indexed by A ,
i.e., maxα∈A {z1, . . . , z|A |}. This problem is equivalent to the following linear programme:

maximize
μ∈S |A |

∑
α∈A

μαzα .

Moreover, the solution μ∗ of the linear programme satisfies μ∗
k = 0 for all k /∈ I := {α ∈ A : zα = z0}

with z0 := max{z1, . . . , z|A |}.

Proof. Note that

z0 =
∑
α∈A

μαz0 �
∑
α∈A

μαzα for all μ ∈ S |A | ,
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so that z0 � ζ ∗ := maxμ∈S |A |
∑

α∈A μαzα . On the other hand, we have ζ ∗ � zα for all α ∈ A . Therefore,
z0 = ζ ∗. The proof is established by contradiction: suppose that there exists some indices b ∈ Ī := {α ∈
A : zα < z0} such that μ∗

b |= 0. We have

z0 =
∑
α∈A

μ∗
αzα

=
∑
α∈I

μ∗
αz0 +

∑
α∈Ī

μ∗
αzα

�
∑
α∈I

μ∗
αz0 +

∑
α∈Ī

μ∗
α z̃,

where z̃ = maxα∈Ī zα . The last inequality implies that

∑
α∈Ī

μ∗
αz0 =

(
1 −

∑
α∈I

μ∗
α

)
z0 �

∑
α∈Ī

μ∗
α z̃.

In other words, z0 � z̃, the desired contradiction. �

1176

 at C
entro de Investigacion y de E

studios A
vanzados del Instituto Politecnico N

 on January 7, 2017
http://im

am
ci.oxfordjournals.org/

D
ow

nloaded from
 

http://imamci.oxfordjournals.org/

	Introduction
	Main contribution

	Problem formulation
	Admissible controls
	Problem statement

	Solution to the min--max problem
	Multi-model method of Lagrange multipliers
	Extended Riccati equation, complementary slackness
	Numerical algorithm

	Numerical examples
	Conclusions

