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Summary

We propose an observer for a SIR epidemic model. The observer is then uplifted into
a predictor to compensate for time delays in the input and the output. Tuning criteria
are given for tuning gains of the predictor, while the estimation-error stability is
ensured using Lyapunov-Krasovskii functionals. The predictor’s performance is first
evaluated in combination with a time-optimal control. It is shown that the predictor
nearly recovers the performance level of the delay-free system. Finally, the predictor
is evaluated using real data from a covid epidemic.
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1 INTRODUCTION

Epidemics are a good example of how reality challenges researchers, offering the opportunity to show the strength of existing
techniques and develop new ones in fields as varied as medicine, biology, computational sciences, and mathematical system
theory.
Epidemiological models have been primarily used for prediction purposes, while mitigation policies are usually decided based

on exhaustive simulations. From the perspective of control theory, an epidemic is viewed as a dynamical system with controlled
variables. Its model is an instrument for designing a control action that will achieve the desired outcome. Depending on the
context, different assumptions on the model and other control objectives can be formulated. Most works focus on vaccination
or treatment policies, with the goals expressed in an optimal-control framework1. In the context of the current covid pandemic,
with vaccines scarce or unavailable in many countries, intervention policies based on social distancing measures remain the
core containment tool. Considering the dramatic effect that extended lockdowns have on people and countries economies, a
minimum-time control using social distancing measures and considering hospital capacity restrictions was recently presented
for the SIR model2.
The SIR model, which we also consider in this paper, is arguably the simplest epidemiological model. However, it already

exhibits many of the nonlinear characteristics that are present in more elaborate models. We make the model more realistic
by adding features such as inaccurate and partial state measurements, and input and measurement delays. In recent months,
delays in measurements and policy implementation have proved to be critical in the success or failure of government strategies.
The former correspond to the time taken for the tests to be carried out, processed, verified, and made available in centralized
databases. The latter correspond to the time it takes the population to adopt restrictions such as quarantine, social distancing
habits, and mask use.
Due to the prevalence of delays in the feedback loops of control systems and the associated detrimental effects on performance,

input and output delays have received sustained attention in the past decades. Some early strategies for compensating the delays

0Abbreviations: SIR, susceptible-infectious-recovered; ICU, intensive care unit; LMI, linear matrix inequality
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are the Smith controller3, the transformation-based reduction approach4, and the time-domain predictor-based designs5. Based
on present state information, predictors based on Cauchy’s formula provide the state ahead of time6. They were formally shown
to ensure closed-loop stability7, but their practical implementation reveals instabilities due to neutral phenomena related to the
integrals’ discretization in Cauchy’s formula. These issues inspired new proposals such as filtered predictors8,9, and truncated
predictors10. If the present state is not entirely measurable, it can be replaced by an estimation, provided that the system is
observable11.
A recent approach to the compensation of delays consists of modifying an observer to predict future states. It was first intro-

duced for the case of linear systems with full-state information12 and later extended to the partial information scenario13. This
approach, called observer-predictor, is inspired on the proposal of chain observers for systems with delayed measurements
studied in a differential geometry framework14,15. It also suffers from some drawbacks: It loses the exact nature of predictions
obtained with Cauchy’s formula and requires the inclusion of extra sub-predictors designed via LMI techniques. However, it
has significant advantages: The observer has the same structure as the system (modulo an output injection term), thus avoiding
integrals in the prediction formulae. Also, it is readily applicable to the case of partial state information in observable systems,
especially when observers are readily available. Systems with state delays16 or nonlinear systems17 can be modified easily to
successfully compensate for input or output delays.
To tackle the complexity due to partial state availability, delay, and measurement errors, we resort to a wide array of tools

available to specialists in the field of control of dynamical systems. For the control, we use a recent optimal law2. The objective
is not to steer the epidemics towards a desired equilibrium. Instead, the aim is to track an optimal trajectory. As a result, the
dynamics for the estimation error are time-varying and time-delayed. The stability of such dynamics is addressed from both the
perspective of classical frequency-domain quasipolynomial analysis18,19, and from the perspective of time-domain Lyapunov-
Krasowskii analysis20,21. In particular, the system’s time-varying nature is taken into account by embedding the system into a
model with polytopic uncertainty22,23.
It is worthy of mention that the design of observers for systems with output delay have received a sustained attention in past

and recent years. See, for example, the approach based on differential geometry15, on extended pseudo linearization combined
with state Riccati equations24, on the Hamiltonian function25, and the references therein.
In Section 2, we introduce the SIR model and discuss the issues we want to overcome. An ad hoc change of variable allows

designing an observer addressing incomplete state information for the delay-free system. In Section 3, this observer is developed
into an observer-based predictor for the system with input and output delays. The next two sections are devoted to tuning the
observer: A simple criterion to tune the observer gains is given in Section 4, and conditions for the stability of the prediction
error dynamics are given in Section 5. The impact of measurement errors is discussed in Section 6. We show the validity of our
approach by discussing a SIR case study along with the paper, which is of interest in its own right, and which is verified against
real data in Section 7. We conclude with some remarks.
Allow us to recall some standard notation used in the literature of time-delay systems.

Notation.
PC([−�, 0],ℝn) is the set of piece-wise continuous functions defined on the interval [−�, 0]. Consider a time-delay differential
equation

"̇(�) = f (�, "(�), "(� − �(�))) . (1)
The time-varying delay, �(�), is bounded by 0 < �(�) ≤ �̄. Given an initial function ' ∈ PC([−�(0), 0],ℝn) the solution is
denoted by "(�, '). The restriction of "(�, ') on the interval [� − �(�), �] is denoted by

"�(') ∶ � → "(� + �, ') , � ∈ [−�(�), 0] .

We will make use of the trivial function 0�̄ ∶ � → 0, � ∈ [−�̄, 0]. We use the Euclidean norm ‖ ⋅ ‖ for vectors and the
corresponding induced norm for matrices. For ' ∈ PC([−�, 0],ℝn) we use the norm

‖'‖� = sup
�∈[−�,0]

‖'(�)‖ .

The notation Q > 0 means that the symmetric matrix Q is positive definite.
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2 PROBLEM STATEMENT

We consider a state-space SIR model
d
dt
S(t) = −�(t − ℎ1)S(t)I(t)

d
dt
I(t) = (�(t − ℎ1)S(t) − 
)I(t)

y(t) = I(t − ℎ2)

.

Here, S > 0, I > 0 denote the susceptible and the infected, respectively. The model is normalized, hence S + I ≤ 1. The
transmission rate, � ∈ [�min, �max] with �max > �min > 0, can be controlled by applying social distancing measures, but such
measures take effect ℎ1 units of time later. The only information available at time t is the number of infected people at time
t − ℎ2. The recovery/death rate, 
 > 0, and the time delays, ℎ1, ℎ2, are assumed to be known.
There are of course more sophisticated models. It is possible to include exposed individuals (infected but not infectious), to

distinguish between symptomatic and asymptomatic, dead and recovered, etc. However, for epidemics the parameters of which
have large levels of uncertainty, such as covid-19, a simple model with fewer parameters is preferable, as long as it is able to
reproduce the main features of the epidemics (hospital saturation, lock-down effects, herd immunity, and so forth). A simpler
model is also preferable when the objective is to devise decision strategies, rather that simulating long-term behavior.
Using only the history of y, we wish to produce predictions Ŝ, Î such that

lim
t→∞

(Ŝ(t) − S(t + ℎ1), Î(t) − I(t + ℎ1)) = 0 .

Our motivation is that, if we have a feedback �∗(S, I) that is known to perform correctly on the system without delays, we can
set � = �∗(Ŝ, Î) and expect to recover a similar performance1.
For concreteness, we consider the optimal-time control strategy described by Angulo et al2. For the SIR model, the basic

(unmitigated) reproduction number is computed as R0 = �max∕
 , while the controlled (mitigated) reproduction number is
Rc = �min∕
 . Suppose that the health system capacity of a given city is limited to Imax infected people. The strategy that ensures
I(t) ≤ Imax and achieves herd immunity in a minimal time is

�⋆(S, I) =

{

�max if I < Φ(S)
�min otherwise

(2)

with

Φ(S) =

{

Imax +
1
Rc
ln
(

S
S⋆

)

− (S − S⋆) if S⋆ ≤ S ≤ 1

Imax if 0 ≤ S ≤ S⋆

and
S⋆ = min

{

1
Rc
, 1
}

.

We consider a recovery rate 
 = 1∕7with time units given in days2. For illustration purposes, we consider the case of Mexico
City. The number of ICU beds is such that Imax = 12.63 × 10−3 (see2). We take the reproduction numbers as R0 = 1.7 and
Rc = 1.12. This gives

�max = 1.7∕7 and �min = 1.1∕7 .
The optimal response, achieved with full state-feedback in the absence of delays, is shown in Fig. 1. The optimal strategy is

to allow the epidemic to run free until it reaches the sliding curve I = Φ(S). The state is then driven along this curve towards
the region of herd immunity (gray rectangle) where the intervention finally stops. For implementation purposes, one can replace
the discontinuous action (2) with a continuous approximation, such as Yoshida’s26, Ch.32.
Suppose now that there is a delay of ℎ1 = 3 days in the control action. Figure 2 confirms the appearance of the so-called

chattering effect, which should not be surprising given the discontinuous nature of (2). We can expect the performance of the
closed-loop system to deteriorate even further when only the number of infected people is available for measurement, and when
such measurements are also subject to important delays. The objective of the predictor, developed in the following section, is to
mitigate these unfavorable effects.

1The full analysis would have to be performed, of course.
2Indeed, this is how we will perform all simulations.
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FIGURE 1 Phase-plane of the model under the optimal feedback law (2) (left). The trajectory with thick line is depicted on the
right (blue and orange, scale shown on the left axis). The control action is also included (black, scale shown on the right axis).

FIGURE 2 Trajectory corresponding to the feedback law (2) subject to a delay of ℎ1 = 3 days. The trajectory ultimately results
in chattering.

3 OBSERVER-BASED PREDICTOR

To attain our objective we follow the approach in which an observer for the delay-free system is constructed in a first step, and
then developed into a predictor in a second one12,16,17.

3.1 Delay-free observer
We begin by making the temporary assumption ℎ1 = ℎ2 = 0. Note that, by setting x1 = ln(y) and x2 = S, we obtain the model

d
dt
x1(t) = �(t)x2(t) − 


d
dt
x2(t) = �(t)�(x(t))

with �(x) = −x2ex1 . The main advantage over the original model is that the first equation is affine in the state. We can then write
the simple observer

d
dt
x̃1(t) = �(t)

(

x̃2(t) + �1(x1(t) − x̃1(t))
)

− 


d
dt
x̃2(t) = �(t)

(

�(x̃(t)) + �2(x1(t) − x̃1(t))
)

,

where �1, �2 will be defined below (Proposition 1). Consider the error � = x − x̃. By using the expansion

�(x̃) = �(x) +
(

−x2ex1 −ex1
)

� + (‖�‖2) ,
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we can write the error dynamics as
d
dt

(

�1(t)
�2(t)

)

= �(t)A(t)
(

�1(t)
�2(t)

)

+ (‖�(t)‖2) (3)

with
A(t) =

(

−�1 1
−�2 − S(t)I(t) −I(t)

)

.

Note that, since we are linearizing the estimation error around a trajectory (rather than an equilibrium), the linearized system is
time-varying. Fortunately, we can ensure its stability with a simple quadratic Lyapunov function.

Proposition 1. Set

�2 >
�21 + 1

4
√

2�1 − 1
, �1 >

1

4
√

2
(4)

Then (3) is locally quadratically stable3.

Proof. Consider the candidate Lyapunov function V (�) = �⊤P� with P = P ⊤ > 0 the solution of the Lyapunov equation

P
(

−�1 1
−�2 0

)

+
(

−�1 −�2
1 0

)

P = −
(

1 0
0 1

)

,

that is,

P = 1
2�1�2

(

�22 + �2 −�1�2
−�1�2 �21 + �2 + 1

)

. (5)

The time-derivative of V along the trajectories of (3) is

V̇ (�(t)) = −
�(t)
2�1�2

�⊤(t)W (S(t), I(t))�(t) + (‖�(t)‖3)

with
W (S, I) =

(

2(1 − SI)�1�2 (�21 + �2 + 1)SI − �1�2I
(�21 + �2 + 1)SI − �1�2I 2

(

�1�2 + (�21 + �2 + 1)I
)

)

. (6)

The restrictions (S, I) ∈ [0, 1]2, S+I ≤ 1 imply that SI ≤ 1∕4, so the first leading principal minor ofW (S, I), 2(1−SI)�1�2,
is strictly positive. Regarding the second leading principal minor, we have

|W (S, I)| = �21�
2
2
(

4(1 − SI) − I2
)

+ �1�2(�21 + �2 + 1)(4 − 2SI)I − (�
2
1 + �2 + 1)

2S2I2 .

Using again SI ≤ 1∕4 we obtain the bound

|W (S, I)| ≥ 2�21�
2
2 −

1
16
(�21 + �2 + 1)

2 .

Finally, the condition (4) ensures that |W (S, I)| > 0, so that V is indeed a Lyapunov function.

In the original coordinates, the observer takes the form
d
dt
S̃(t) = −�(t)

(

S̃(t)Ĩ(t) − �2 ln
(

y(t)
Ĩ(t)

))

d
dt
Ĩ(t) =

(

�(t)S̃(t) − 
 + �(t)�1 ln
(

y(t)
Ĩ(t)

))

Ĩ(t)
. (7)

A simulation of the observer’s performance is shown in Fig. 3. The observer gains, �⊤ =
(

�1 �2
)

=
(

4 1
)

were chosen to
satisfy (4). At first, the incidence of infection exceeds Imax by about 12%, but then the epidemics behave as desired.
Consider again the input delay ℎ1 = 3 days, and suppose now there is a measurement delay of ℎ2 = 7 days27. The combined

effect of both delays is disastrous. As illustrated in Fig. 4, the hospital capacity is exceeded by more than 200%. This motivates
the design of the predictor presented in the sequel.

3Recall that (3) is quadratically stable if there is a common quadratic Lyapunov function for all possible A(t) 22, Ch. 5.
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FIGURE 3 True and estimated trajectories under the feedback law � = �⋆(S̃, Ĩ), with no delays.

FIGURE 4 True and estimated trajectories under the feedback law � = �⋆(S̃, Ĩ) with ℎ1 = 3 and ℎ2 = 7 days.

3.2 Predictor
Let us rewrite the observer in the original coordinates and remove the zero-delays assumption. This gives the predictor

d
dt
Ŝ(t) = −�(t)

(

Ŝ(t)Î(t) − �2 ln
(

y(t)
Î(t − ℎ)

))

d
dt
Î(t) =

(

�(t)Ŝ(t) − 
 + �(t)�1 ln
(

y(t)
Î(t − ℎ)

))

Î(t)
(8)

with ℎ = ℎ1 + ℎ2. Considering that y(t) = I(t − ℎ2), the error variables

�1(t) = ln

(

I(t)
Î(t − ℎ1)

)

�2(t) = S(t) − Ŝ(t − ℎ1)

(9)

evolve according to the dynamics

d
dt
�1(t) = �(t − ℎ1)

(

S(t) − Ŝ(t − ℎ1) − �1 ln

(

I(t − ℎ)
Î(t − ℎ − ℎ1)

))

d
dt
�2(t) = �(t − ℎ1)

(

− �2 ln

(

I(t − ℎ)
Î(t − ℎ − ℎ1)

)

+ Ŝ(t − ℎ1)Î(t − ℎ1) − S(t)I(t)

) . (10)

Since Î(t − ℎ1) = e−�1(t)I(t) and Ŝ(t − ℎ1) = S(t) − �2(t), we have
d
dt
�1(t) = �(t − ℎ1)

(

−�1�1(t − ℎ) + �2(t)
)

d
dt
�2(t) = �(t − ℎ1)

(

−�2�1(t − ℎ) +  (S(t), I(t), �(t))
)

(11)
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with
 (S, I, �) = ((S − �2)e−�1 − S)I . (12)

System (11) can be written in the general form
d
dt
�(t) = �(t − ℎ1)

[

A0(t)�(t) + A1�(t − ℎ) + G(t, �(t))�(t)
]

(13)

where the matrices are defined by

A0(t) =
(

0 1
−S(t)I(t) −I(t)

)

, A1 =
(

−�1 0
−�2 0

)

(14)

and
G(t, �) =

(

0 0
G21(t, �) G22(t, �)

)

= (‖�‖)

with
G21(t, �) = −S(t)I(t)

e−�1 + �1 − 1
�1

G22(t, �) = −I(t)(e−�1 − 1)
. (15)

Since � multiplies all the right-hand side of (13), we can do away with it by rescaling time, much in the spirit of perturbation
theory28, Ch. 10. Define the new time-scale

� = g(t) =

t

∫
0

�(s − ℎ1)ds .

Since � is strictly positive, g is strictly increasing, invertible and � is indeed a time-scale. Let us define the new state

"(�) = �(g−1(�))

and note that, by the Inverse Function Theorem, we have

d
d�
g−1(�) = 1

d
dt
g(t)

|

|

|

|

|t=g−1(�)

= 1
�(t − ℎ1)

|

|

|

|

|t=g−1(�)

. (16)

Applying the chain rule and (16), we see that the new state evolves according to
d
d�
"(�) = 1

�(t − ℎ1)
d
dt
�(t)||

|t=g−1(�)
,

that is,
"̇(�) = B0(�)"(�) + B1"(� − �(�)) +H(�, "(�))"(�) (17)

with
B0(�) = A0(g−1(�)) , B1 = A1 , H(�, ") = G(g−1(�), ")

and
�(�) = � − g(g−1(�) − ℎ) .

The last equation follows from the condition

"(� − �(�)) = "(g(g−1(�) − ℎ)) = �(g−1(�) − ℎ)) .

Observe that �minℎ ≤ � − g(t − ℎ) = ∫ t
t−ℎ �(s − ℎ1)ds ≤ �maxℎ, so the time-varying delay is bounded by

�minℎ ≤ �(�) ≤ �maxℎ .

For ease of reference, we will define
�̄ = �maxℎ . (18)
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FIGURE 5 Stability/instability boundaries of the quasipolynomials (21) in the space of parameters (�1, �2) for Ī = 1 and
�̄ = 0.5. The boundary of the intersection of the three regions is depicted in black.

4 TUNING THE PREDICTOR GAINS

There are twomain difficulties in establishing the stability of (17): The time-varying nature ofB0, and the presence of the delayed
state. The former difficulty will be addressed by formulating (17) in the framework of polytopic differential inclusions22, Ch. 5.
In order to do so, we will focus on the state-space rectangle [0, 1] × [0, Ī], where Imax ≤ Ī ≤ 1. When the state is restricted to
such rectangle, B0 varies within a fixed polytope of matrices, i.e.,

B0(t) ∈ Co{C1, C2, C3} , (19)

where
C1 =

(

0 1
0 0

)

, C2 =
(

0 1
0 −Ī

)

, C3

(

0 1
−Ī −Ī

)

(20)

and Co stands for convex closure, that is,

Co{C1, C2, C3} =

{ 3
∑

i=1
ci ⋅ Ci ∣ ci ≥ 0,

3
∑

i=1
ci = 1

}

.

An obvious necessary condition for the stability of the polytopic model (17)-(19) is the stability of its linearized vertices,

"̇(�) = Ci"(�) + B1"(� − �̄) , i = 1, 2, 3.

The characteristic equations of the vertices are
p1(s) = s2 +

(

s�1 + �2
)

e−�̄s

p2(s) = s2 +
(

(s + Ī)�1 + �2
)

e−�̄s + sĪ
p3(s) = s2 +

(

(s + Ī)�1 + �2
)

e−�̄s + (s + 1)Ī
. (21)

We will work out the stability/instability boundaries of these quasipolynomials in the space of parameters (�1, �2). According
to the D-partition method18, these boundaries correspond to roots crossing the imaginary axis of the complex plane. When the
crossing root is real (s = 0), the boundaries are

p1 ∶ �2 = 0
p2 ∶ �2 = −�1Ī
p3 ∶ �2 = −(�1 + 1)Ī .
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FIGURE 6 Stability/instability boundaries of the quasipolynomials (21) in the space of parameters (�1, �2) for Ī = 0.03 and
�̄ = 2.5. The boundary of the intersection of the three regions is depicted in black.

If a crossing root is imaginary (s = j!), the boundaries satisfy

p1 ∶
(

! sin(!�̄) cos(!�̄)
! cos(!�̄) − sin(!�̄)

)

� =
(

!2

0

)

p2 ∶
(

! sin(!�̄) + Ī cos(!�̄) cos(!�̄)
! cos(!�̄) − Ī sin(!�̄) − sin(!�̄)

)

� =
(

!2

−!Ī

)

p3 ∶
(

! sin(!�̄) + Ī cos(!�̄) cos(!�̄)
! cos(!�̄) − Ī sin(!�̄) − sin(!�̄)

)

� =
(

!2 − Ī
−!Ī

)

The form and disposition of the stability regions depend on �̄ and Ī . Figure 5 shows their boundaries for a relatively small
delay, �̄ = 0.5, and the largest incidence, Ī = 1. Figure 6 shows the boundaries of the stability regions for a larger delay, �̄ = 2.5,
but a smaller incidence, Ī = 0.03. Since stability of the three vertices is a necessary condition for the stability of (17)-(19),
we require � to be placed at the intersection of the three regions (boundaries drawn in black), for example, at an approximate
centroid of the intersection (marked with ⋆).

5 STABILITY OF THE PREDICTOR

Setting � as described in the previous section, i.e., at the intersection of the stability regions, only ensures that a necessary
condition for stability is satisfied. We will now exploit the polytopic nature of (3) and the fact that stabilty is ensured by the
existence of a Lyapunov-Krasowskii functional that is common to all the vertices of the polytope.
We will begin by summarizing a general assertion from the book by Fridman21.

Lemma 1. Consider the candidate Lyapunov-Krasowskii functional

V ("�) = "⊤(�)P"(�) +

�

∫
�−�̄

"⊤(s)S"(s)ds + �̄

0

∫
−�̄

�

∫
�+�

"̇⊤(s)R"̇(s)dsd� (22)

with P > 0, R ≥ 0, S ≥ 0 and �̄ ≥ 0. Define

E(�) =
(

"(�) "̇(�) "(� − �̄) "(� − �(�))
)⊤ .

The time derivative of V satisfies

V̇ ("�) ≤ E(�)⊤

⎛

⎜

⎜

⎜

⎜

⎝

S − R P 0 R
⋆ �̄2R 0 0
⋆ ⋆ −(S + R) 0
⋆ ⋆ ⋆ −2R

⎞

⎟

⎟

⎟

⎟

⎠

E(�) , (23)

where the terms ⋆ are such that the overall matrix is symmetric.
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The lemma is easily proved by differentiating V and applying Jensen’s lemma21, Ch. 3.

Theorem 1. Let

Q(C;P ,R, S, P2, P3) =

⎛

⎜

⎜

⎜

⎜

⎝

C⊤P2 + P ⊤
2 C + S − R P − P ⊤

2 + C
⊤P3 0 P ⊤

2 B1 + R
⋆ −P3 − P ⊤

3 + �̄
2R 0 P ⊤

3 B1
⋆ ⋆ −(S + R) R
⋆ ⋆ ⋆ −2R

⎞

⎟

⎟

⎟

⎟

⎠

, (24)

where C, P ,R, S, P2 and P3 are 2 × 2 matrices, and �̄ is given by (18). Suppose that there exists P > 0, R ≥ 0, S ≥ 0 and P2,
P3 such that

Q(Ci;P ,R, S, P2, P3) < 0 , i = 1, 2, 3 , (25)
with the matrices Ci given by (20) and B1 = A1 defined by (14). Then, the trivial solution of the observer error-dynamics (17)
is locally asymptotically stable.

Proof. The proof follows the descriptor approach21, but we pay special attention to the nonlinear terms in (17) and incorporate
the time-varying nature of the system. Consider again (22) and note that, for any P2, P3 ∈ ℝ2×2,

2
(

"(�)⊤P ⊤
2 + "̇(�)

⊤P ⊤
3
)

⋅
(

B0(�)"(�) + B1"(� − �(�)) +H(�, "(�))"(�) − "̇(�)
)

= 0

or, in matrix form,

E(�)⊤

⎛

⎜

⎜

⎜

⎜

⎝

B0(�)⊤P2 + P ⊤
2 B0(�) −P

⊤
2 + B0(�)

⊤P3 0 P ⊤
2 B1

⋆ −P3 − P ⊤
3 0 P ⊤

3 B1
⋆ ⋆ 0 0
⋆ ⋆ ⋆ 0

⎞

⎟

⎟

⎟

⎟

⎠

E(�) + 2
(

"(�)⊤P ⊤
2 + "̇(�)

⊤P ⊤
3
)

⋅H(�, "(�)) ⋅ "(�) = 0 . (26)

Observe that
2
(

"(�)⊤P ⊤
2 + "̇(�)

⊤P ⊤
3
)

⋅H(�, "(�)) ⋅ "(�) = (‖E(�)‖3) ,
so adding (26) to (23) gives

V̇ ("�) ≤ −E⊤(�)Q(B0(t);P ,R, S, P2, P3)E(�) + (‖E(�)‖3) .

Because of (19), there exists continuous real-valued functions ci such that

B0(�) =
3
∑

i=1
ci(�)Ci , ci(�) ≥ 0 ,

3
∑

i=1
ci(�) ≡ 1 .

Since C appears affinely in (24), we have21, Remark 3.6

V̇ ("�) ≤ −
3
∑

i=1
ci(�)E⊤(�)Q(Ci;P ,R, S, P2, P3)E(�) + (‖E(�)‖3) .

By (25), the derivative of V is negative definite in a neighborhood of the origin and asymptotic stability follows.

Perhaps not surprisingly, the LMI (25) is feasible if the delays are not too large. Allow us to formalize this statement.

Theorem 2. Let Ī < 2
(
√

2 − 1
)

, and let the predictor gains satisfy

�2 >
�21 + 1
a�1 − 1

Ī , �1 >
1
a
Ī , a =

√

4 − 4Ī − Ī2 > 0 . (27)

Then, the LMI (25) is feasible for �̄ small enough.

Proof. Consider the case �̄ = 0 and set S = 0, P2 = P and P3 = �P , where � > 0 is a parameter to be determined later. The
matrix Q (24) takes the form

Q(C;P ,R, 0, P , �P ) =

⎛

⎜

⎜

⎜

⎜

⎝

C⊤P + PC + R �C⊤P 0 PB1 + R
⋆ −2�P 0 �PB1
⋆ ⋆ −R R
⋆ ⋆ ⋆ −2R

⎞

⎟

⎟

⎟

⎟

⎠

.
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FIGURE 7 True and estimated trajectories under the feedback law � = �⋆(Ŝ, Î), with ℎ1 = 3 and ℎ2 = 7 days (solid lines).
For illustration purposes, we include the trajectories that correspond to an unstable prediction error (dashed lines).

By taking the Schur complement of Q with respect to the block
(

−R R
⋆ −2R

)

,

we can readily see that the inequality Q(C;P ,R, 0, P , �P ) < 0 is equivalent to

Q̄(C;P ,R, �) =
(

(C + B1)⊤P + P (C + B1) + PB1R−1B⊤1 P �
(

(C + B1)⊤P + PB1R−1B⊤1 P
)

⋆ −2�P + �2PB1R−1B⊤1 P

)

< 0 . (28)

Take P as in (5). Direct computations show that (27) imply that

(Ci + B1)⊤P + P (Ci + B1) ≤ −W̄ , i = 1,… , 3 (29)

for some W̄ > 0. Let �min be the smallest eigenvalue of R. By (29), we can always choose R with �min large enough so that the
upper-left block of Q̄ is negative definite,

(C + B1)⊤P + P (C + B1) + PB1R−1B⊤1 P < 0 .

For sufficiently small � we have
−2�P + �2PB1R−1B⊤1 P < 0 .

By taking now the Schur complement of Q̄ with respect to its lower-right block we can see that, again for � small enough, the
LMI (28) is satisfied. We have shown that (25) is feasible for �̄ = 0. By continuity, it is also feasible for �̄ small enough.

For our example, we take a conservative approach and set

�̄ = 5 > (ℎ1 + ℎ2)�max = 2.4

and Ī = 30 × 10−3 (recall that Imax = 12.63 × 10−3). The gain � =
(

0.115 0.005
)

lays within the intersection of the stability
regions of p1, p2 and p3.
The LMI (25) was solved using SCS29. A solution is

P =
(

51.1 −140.6
−140.6 979.2

)

, R = S =
(

16.3 −0.6
−0.6 3.3

)

and P2 = P3 =
(

42.3 −85.3
−140.5 984.4

)

,

so, according to Thm. 1, the prediction error converges to zero asymptotically. This is illustrated in Fig. 7 (solid lines). The
hospital capacity is now exceeded by 22% (much smaller than the previous 200%).
The correct tuning of the predictor parameters is, of course, critical. For illustration purposes, we consider the gain � =

(

1.03 0.04
)

, which lays outside the stability region described in Section 4. The response is also shown in Fig. 7 (dashed lines).
The hospital capacity is now exceeded by more than 500%.
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6 ON THE EFFECT OF MEASUREMENT ERRORS

A frequent situation in epidemics is poor output variable measurement, mainly due to underregistration. A sound assumption is
that the output is proportional to the measured variable, I(t − ℎ2). The proportion may be time-varying but always less than 1.
It is described as

y(t) = I(t − ℎ2)m(t − ℎ2)
with

m(t) ∈ [1 − �, 1] , 0 ≤ � < 1 . (30)
The logarithmic term in the prediction error dynamics (10) is now

ln

(

y(t − ℎ1)
Î(t − ℎ − ℎ1)

)

= ln

(

I(t − ℎ)m(t − ℎ)
Î(t − ℎ − ℎ1)

)

= ln

(

I(t − ℎ)
Î(t − ℎ − ℎ1)

)

+ ln(m(t − ℎ)) .

Define d(t) = ln(m(t)) and observe that, by (30), it satisfies |d(t)| ≤ d̄ with

d̄ = ln
( 1
1 − �

)

.

The prediction error now has the dynamics

"̇(�) = B0(�)"(�) + B1"(� − �(�)) +H(�, "(�))"(�) − �d(� − �(�)) . (31)

To analyze the effect of the measurement error on the system response, we compute the time derivative of the functional (22),
now along the trajectories of system (31). Following the same steps as in the proof of Theorem 1, we obtain

V̇ ("�) ≤ −
3
∑

i=1
ci(�)E⊤(�)Q(Ci;P ,R, S, P2, P3)E(�) − 2

(

"(�)⊤P ⊤
2 + "̇(�)

⊤P ⊤
3
)

�d(� − �(�)) + (‖E(�)‖3) .

From the order relation
2
(

"(�)⊤P ⊤
2 + "̇(�)

⊤P ⊤
3
)

�d(� − �(�)) = (d̄ ⋅ ‖E(�)‖)
we conclude that, for d̄ small enough, the solutions are ultimately bounded with ultimate bound proportional to d̄.
We now simulate the effects of the measurement noise described above. We take � = 0.5 and define m(t) a random variable

with a beta distribution. We perform simulations for the predictor and the observer (see Fig. 8). The measurement errors result
in a higher number of infected people. The poor performance of the observer had already been established. Noise simply makes
it worse. In the case of the predictor, the increment is relatively low if we take into account the high amplitude of the error.

7 PREDICTION USING REAL DATA

Finally, we will evaluate the predictor’s performance using real data from the covid epidemic in Mexico City. Figure 9 (top)
shows records of active cases obtained on different days. Note that the number of active cases registered on the current day is
quite unreliable but, as time goes by, the records are updated until further corrections become negligible. It can be seen that
present data about cases that are older than 20 days is fairly accurate, so we take ℎ2 = 20.
We do not know the exact control strategy implemented by the public health officials, but we can use the community mobility

to infer it. Indeed, it is reasonable to expect the transmission rate to be proportional to the mobility, so we set

�(t) = �max ⋅ (1 + chg(t)) ,

where chg is the mobility change with respect to the baseline. Note that in this case we have ℎ1 = 0.
Following the guidelines of Section 4 with ℎ = ℎ1 + ℎ2 = 20 we propose

�1 = 0.38 and �2 = 0.05 .

We activate the predictor at time t = −ℎ with an initial state defined by

Ŝ(t) = 1 and Î(t) = I(t) , t ∈ [−2ℎ,−ℎ] ,

where I is taken from the report available at day t = 0 (black line). The resulting prediction (dashed green line) closely matches
the report that will appear 20 days later (solid green line). Consequently, the prediction Î(0) is practically equal to the value that
will be finally reported.
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FIGURE 8 Closed-loop trajectories using the predictor (8) (top) and the observer (7) (bottom). Simulations were performed
with and without measurement errors.

FIGURE 9 Prediction of the infected fraction of the population of Mexico City (dashed green line). The prediction is computed
using records of active cases available at day zero30 (black line, top), and of mobility changes31 (black line, bottom). The
prediction was obtained using (8) with ℎ1 = 0 and ℎ2 = 20. For comparison purposes, some future records of active cases are
included. Day zero corresponds to August the 3rd, 2020.

8 CONCLUSIONS

We have presented a predictor for systems with large input delays. The predictor is designed using the observer-predictor
methodology introduced in the past years. In contrast with existing proposals, we present simple tuning criteria for ensuring
the simultaneous stability of the polytopic model’s vertices. The stability of the complete polytopic model is then established
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formally with the help of a Lyapunov-Krasovskii functional. The functional can also be used to assess the sensitivity of the pre-
dictor with respect to error measurements. It is worthy of mentioning that it can also be used to find estimates of the domain of
attraction, robustness bounds for the delay, and parameter uncertainties, among other problems of interest. The predictor was
put to the test using real data from the covid pandemic in Mexico City, 2020. The results are encouraging and consistent with
the analysis.
Our current research concerns the extension of the present results, obtained for two-dimensional systems, to n-dimensional

ones, and to apply them to the study of more elaborated epidemic models involving states such as vaccinated individuals and
asymptomatic ones.
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