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In this paper we consider the analysis and design of an output feedback controller for a perturbed nonlinear
system in which the output is sampled and quantized. Using the attractive ellipsoid method, which is based
on Lyapunov analysis techniques, together with the relaxation of a nonlinear optimization problem, sufficient
conditions for the design of a robust control law are obtained. Since the original conditions result in nonlinear
matrix inequalities, a numerical algorithm to obtain the solution is presented. The obtained control ensures that
the trajectories of the closed-loop system will converge to a minimal (in a sense to be made specific) ellipsoidal
region. Finally, numerical examples are presented in order to illustrate the applicability of the proposed design
method.
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1 Introduction

Motivated by emerging applications in networked control systems (Peng et al, 2011, Peng and
Tian 2007, Zhang and Yu 2007), the control community has witnessed a renewed interest in phe-
nomena that is inherent to the digital implementation of continuous-time control systems, such
as sampling and quantization. A major line of research in this area incorporates the information-
theoretical aspects (such as channel capacity) of the networked control problem and aims at a
theory that parallels the celebrated mathematical theory of communication (Shannon 1948).
Interesting results have been obtained by following this direction; it is now possible, e.g., to
relate the absolute value of the unstable eigenvalues of a system and the minimum channel ca-
pacity that is required in order to stabilize it (Nair and Evans 2003, Tatikonda and Mitter 2004,
Matveev and Savkin 2007). While certainly of great theoretical interest, most of these results are,
so far, limited to linear systems. The problem statement is cast in a stochastic framework and
emphasis is given to the coding and decoding aspects of the communication channel (see Phat
et al, (2004) for a coding scheme).
From a different point of view, quantization can be regarded either as a deterministic noise

or as a deterministic perturbation, depending on whether quantization affects the control or
the output signals. A robust-control approach, such as H∞ (Gao and Chen 2008) or the sector
bound (Fu and Xie 2005), can then be applied to cope with the quantization problem. Again,
most of the results using this approach are limited to linear systems. In this paper we deal with
the quantization problem by applying the attractive ellipsoid method (Glover and Schweppe
1971, Kurzhanski and Varaiya 2006, Polyak et al, 2004, Polyak and Topunov 2008, Davila and
Poznyak 2011). This allows us to design dynamic feedback control laws for a class of nonlinear
systems satisfying a quasi-Lipschitz condition (Azhmyakov et al, 2013a,b). The class of systems
is fairly large, as it includes systems with hard or even discontinuous non linearities.
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We consider static and time-invariant quantizers. Because of its time-invariance nature, the
required quantizer has an infinite number of quantization levels and practical stability is obtained
instead of asymptotic stability (see Brockett and Liberzon (2000) for a finite dynamic quantizer
achieving asymptotic stability). The attractive ellipsoid method delivers an estimated region of
convergence in the form of an ellipsoid. Using numerical methods, a controller is chosen with a
clear performance criterion: to minimize the size of such ellipsoid.
To deal with the sampling problem, it is typically assumed that the system is already in

discrete-time form. We do not make such assumption. In the spirit of Tian et al, (2008) and Frid-
man and Dambrine (2009), we consider continuous-time systems and approach the sampling
problem from a time-delay systems perspective. To compute the aforementioned ellipsoid, we
construct a Lyaunov-Krasovskii functional instead of the usual Lyapunov function. In this re-
gard, the present work can be seen as an extension of the work presented in Mera et al, (2009)
to the case when quantization phenomena are present.

Paper structure The problem is formally stated in the following section. Section 3 states condi-
tions for a given ellipsoid to be attractive with respect to the closed-loop dynamics arising from
the proposed controller. A sub-optimal algorithm for the minimization of such ellipsoid is given
in Section 4. Numerical examples are given in Section 5. Conclusions can be found in Section 6.

2 Problem Formulation

Consider the nonlinear system

ẋ(t) = f(t, x(t)) +Bu(t) + υx(t) , (1)

where x(t) ∈ R
n, u(t) ∈ R

m and υx(t) ∈ R
n are, respectively, the state vector, control input

and perturbation at time t ∈ R+. We use the following model to describe a noisy, sampled and
quantized output:

¯̄y(t) = Cx(t) + ωy(t) , (2a)

ȳ(t) =
∑

tk

¯̄y(tk)χ[tk,tk+1)(t) , (2b)

y(t) = π(ȳ(t)) . (2c)

The vector ωy(t) ∈ Rq in (2a) is the deterministic noise. The symbol χ[tk,tk+1) in (2b) denotes
the characteristic function of the time interval [tk, tk+1), i.e.,

χ[tk,tk+1)(t) :=

{

1 if t ∈ [tk, tk+1)
0 otherwise

, k = 0, 1, 2, . . .

Thus, ȳ : R+ → R
q is the piecewise constant function which is obtained by sampling and holding

¯̄y at the discrete instants tk. The actual system output at time t is y(t) ∈ R
q, and is obtained

by quantizing the sampled signal ȳ. Formally: Let Y ⊂ R
q be a countable set of possible output

values. Then, π : Rq → Y in (2c) is defined as a projection operator, i.e., as an operator that
satisfies π ◦ π(ȳ) ≡ π(ȳ). The image of π is a discrete subset of Rq. The components of the
measurable output y(t) have the form as they are depicted in Fig. 1.
Let us now formulate our basic assumptions.

Assumption 2.1
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Figure 1. The components of the measurable output.

(i) The perturbation and noise are unknown but bounded. More precisely, there are known
positive definite matrices Qx ∈ R

n and Qy ∈ R
q such that

‖υx(t)‖
2
Qx

+ ‖ωy(t)‖
2
Qy

≤ 1 for all t ∈ R+ . (3)

Here, ‖ · ‖Qx
and ‖ · ‖Qy

are weighted norms given by Qx and Qy.
(ii) The function f is also unknown but satisfies the quasi-Lipschitz bound

‖f(t, x)−Ax(t)‖2Qx
≤ δ + ||x(t)||2Q for all (t, x) ∈ R

+ × R
n , (4)

where δ > 0 is a scalar and Q > 0 and A are known (n× n)-dimensional matrices.
(iii) The pair (A,B) is stabilizable and (A,C) is detectable.
(iv) The sampling intervals need not be regular, but there exists a maximum sampling interval

h := max
k

|tk+1 − tk| .

(v) The quantization error is bounded, i.e., the positive scalar

c := max
ȳ∈Rq

‖π(ȳ)− ȳ‖2Qy
(5)

is finite.

Notice that (4) is not restrictive and comprises a large class of unknown nonlinear func-
tions (Azhmyakov et al, 2013a,b). By defining the auxiliary function ωx(t) := υx(t)+f(t, x(t))−
Ax(t), we can rewrite (1) in the quasi-linear format

ẋ(t) = Ax(t) +Bu(t) + ωx(t) . (6)

Condition (iii) then becomes natural. We assume (5) for simplicity but, as kindly pointed out
by an anonymous reviewer, the sampling scenario can be extended to the case of mixed (lin-
ear/logarithmic) quantization: maxȳ∈Rq ‖π(ȳ)− ȳ‖2Qy

≤ c+ ‖ȳ‖2.
We approach the partial-information problem using a conventional Luenberger observer

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− Cx̂(t)) , (7)

where L ∈ R
n×q is the observer gain. The control law is taken as

u(t) = Kx̂(t) , (8)

with K ∈ R
m×n the control gain.
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Let us now introduce the estimation error e(t) := x(t) − x̂(t) and the auxiliary variable
∆y(t) := y(t)− ¯̄y(t) . It can be readily seen that e(t) satisfies the dynamic equation

ė(t) = Ax(t) +Bu(t) + ωx(t)−
(

Ax̂(t) +Bu(t) + L(¯̄y +∆y − Cx̂(t))
)

ė(t) = (A− LC)e(t)− L(∆y(t) + ωy(t)) + ωx(t) . (9)

It is possible to write the closed-loop equations (7) and (9) more compactly as

ż(t) = Ãz(t) + Fω(t) + ψ(t) , (10)

where we have defined the vectors

z(t) :=

(

x̂(t)
e(t)

)

, ω(t) :=

(

ωx(t)
ωy(t)

)

and ψ(t) :=

(

L
−L

)

∆y(t)

and the matrices

Ã :=

(

A+BK LC
0 A− LC

)

and F :=

(

0 L
I −L

)

.

Because of the presence of ω and ψ, it is not reasonable to expect z(t) to converge to the origin
as t → ∞. On the other hand, if K and L are properly chosen, it reasonable to expect z(t) to
converge to a ‘small’ set containing the origin. Our problem is first to find an estimate of such
set and then to find L and K that minimize (in a sense to be defined later) its ‘size’.

3 Extended Attractive Ellipsoid Method

To estimate the region where the states of (10) converge, we use the ellipsoid method and propose
an extension to deal with the sampling and the quantization of the output.

3.1 Attractive sets

Let us sketch the main idea first and let us recall a basic lemma about differential inequalities.

Lemma 3.1: Let a function V : R+ → R satisfy the differential inequality

V̇ (t) ≤ −αV (t) + β . (11)

Then, its solutions satisfy

V (t) ≤ e−αtV (0) +
β

α
(1− e−αt) . (12)

Lemma 3.1 is a particular case of Theorem 4.1 (Hartman 2002, Ch. III). Now, suppose that

V (t) := V ◦ z(t)

with V : R2n → R+ differentiable, z(t) a solution of (10) evaluated at time t and the operator ◦
denotes composition. Then, Eq. (12) with α > 0 and β ≥ 0 clearly implies that the sub-level set

Vβ/α :=

{

z ∈ R
2n : V(z) ≤

β

α

}
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is attractive (i.e., lim supt→∞ V (t) ≤ β/α).

3.2 A Lyapunov-Krasovskii functional

Since sampling entails delays, instead of a regular function we suggest to use a Lyapunov-
Krasovskii functional. More precisely, let C0(R,R2n) be the space of all continuous functions of
R into R

2n, differentiable almost everywhere; let R > 0 and P > 0 be (2n× 2n)-dimensional
matrices and let α > 0 be a scalar. We propose the functional V : R×C0(R,R2n) → R+, defined
as1

V (t, z(·)) := z⊤(t)P−1z(t) + h

∫ 0

θ=−h

∫ t

s=t+θ
eα(s−t)ż⊤(s)Rż(s)dsdθ . (13)

Our primary goal is to derive sufficient conditions for V (t, z(·)) to satisfy (11) with α > 0 and
β ≥ 0 when z is a solution of (10). Let us begin with the case when z is arbitrary.

Theorem 3.2 : For any given

z(·) ∈ C0(R,R2n) , h, α, b ∈ R , P,R ∈ R
2n×2n

such that h > 0, α > 0, P > 0 and R > 0, the time derivative of V (t, z(·)) in (13) satisfies the

bound

V̇ (t, z(·)) ≤ −αV (t, z(·)) + bδ̄ + η(t, z(·))⊤Wη(t, z(·)) , (14)

where

η(t, z(·)) :=









z(t)
ż(t)

z(t)− z(tk)
ω(t)









, W :=









αP−1 + bQz P
−1 0 0

∗ h2R 0 0
∗ ∗ −he−αhR 0
∗ ∗ ∗ −bQ̄









, (15a)

Q̄ :=

(

Qx 0
0 Qy

)

, Qz :=

(

I
I

)

Q
(

I I
)

and δ̄ := δ + 1 . (15b)

Before giving the proof of the theorem, let us state a pair of simple lemmas.

Lemma 3.3: The perturbation ω satisfies the bound

‖ω(t)‖2Q̄ ≤ δ̄ + ‖x(t)‖2Q . (16)

Proof : Direct computation of the norm gives

‖ω(t)‖2Q̄ = ‖ωx(t)‖
2
Qx

+ ‖ωy(t)‖
2
Qy

= ‖υx(t) + f(t, x(t))−Ax(t)‖2Qx
+ ‖ωy(t)‖

2
Qy

≤ ‖υx(t)‖
2
Qx

+ ‖f(t, x(t))−Ax(t)‖2Qx
+ ‖ωy(t)‖

2
Qy

. (17)

Substitution of (3) and (4) in (17) shows that

‖ω(t)‖2Q̄ ≤ 1 + δ + ‖x‖2Q .

1Recall that a delay system is infinite-dimensional and its response is defined uniquely by the initial condition z0 : [−h, 0] →
R
2n. Thus, the value of z(τ) in the interval [−h, 0] is given by the initial condition that defines the specific solution of (10).

Note that functional does not contain the single-integral term as there is in Fridman (2001) and Mera et al, (2009).
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Lemma 3.4: For any given z(·) ∈ C0(R,R2n), h > 0, α > 0, R > 0, we have

−h

∫ t

t−h
eα(s−t)ż⊤(s)Rż(s)ds ≤ −he−αh

∫ t

tk

ż⊤(s)dsR

∫ t

tk

ż(s)ds . (18)

Proof : Since e−αh ≤ eα(s−t) for all s ∈ [t− h, t] and R is positive definite, we have

−h

∫ t

t−h
eα(s−t)ż⊤(s)Rż(s)ds ≤ −he−αh

∫ t

t−h
ż⊤(s)Rż(s)ds . (19)

By splitting the integration interval at the time tk ∈ [t− h, t), we obtain

−he−αh

∫ t

t−h
ż⊤(s)Rż(s)ds = −he−αh

∫ tk

t−h
ż⊤(s)Rż(s)ds− he−αh

∫ t

tk

ż⊤(s)Rż(s)ds

≤ −he−αh

∫ t

tk

ż⊤(s)Rż(s)ds ≤ −he−αh

∫ t

tk

ż⊤(s)dsR

∫ t

tk

ż(s)ds ,

(20)

where the first inequality follows from the fact that h is positive the second one follows from
Jensen’s inequality (Poznyak 2008). Combining (19) and (20) yields (18). �

Proof (of Theorem 3.2): We begin by directly computing V̇ :

V̇ (t, z(·)) = 2z⊤(t)P−1ż(t)− αh

∫ 0

−h

∫ t

t+θ
eα(s−t)ż⊤(s)Rż(s)dsdθ

− h

∫ t

t−h
eα(s−t)żT (s)Rż(s)ds+ h2żT (t)Rż(t) . (21)

By adding and subtracting αV (t, z(·)) to the right-hand side of (21) we obtain

V̇ (t, z(·)) = 2z⊤(t)P−1ż(t) + αz⊤(t)P−1z(t)− h

∫ t

t−h
eα(s−t)ż⊤(s)Rż(s)ds

+ h2ż⊤(t)Rż(t)− αV (t, z(·)) . (22)

The following upper bound for V̇ can be easily obtained from (22) and (18):

V̇ (t, z(·)) ≤ −αV (t, z(·)) + η1(t, z(·))
⊤W1η1(t, z(·)) , (23)

where

η1(t, z(·)) :=





z(t)
ż(t)

∫ t
tk
ż(s)ds



 =





z(t)
ż(t)

z(t)− z(tk)
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and W1 is a symmetric matrix defined by

W1 :=





αP−1 P−1 0
∗ h2R 0
∗ ∗ −he−αhR



 .

By adding and subtracting b‖ω(t)‖2
Q̄
to the right-hand of (23), we can rewrite the upper bound

as

V̇ (t, z(·)) ≤ −αV (t, z(·)) + b‖ω(t)‖2Q̄ + η(t, z(·))⊤W2η(t, z(·)) , (24)

where

W2 :=









αP−1 P−1 0 0
∗ h2R 0 0
∗ ∗ −he−αhR 0
∗ ∗ ∗ −bQ̄









.

From (16), we have

V̇ (t, z(·)) ≤ −αV (t, z(·)) + b(δ̄ + ‖x(t)‖2Q) + η(t, z(·))⊤W2η(t, z(·)) . (25)

Since

‖x(t)‖2Q = ‖x̂(t) + e(t)‖2Q =
∥

∥

(

I I
)

z(t)
∥

∥

2

Q
= z(t)⊤Qzz(t) ,

we can finally rewrite (25) as (14). �

Now we will refine the bound given in Theorem 3.2 by restricting z(·) to the set of solutions
of (10). In order to do so, we follow the idea presented in Fridman (2006) and Fridman and
Niculescu (2008) which, originally devised for systems in descriptor form, consists in adding a
term (the descriptor term) to the expression for V̇ . The descriptor term has to be zero for any
solution z of the system. In our case, we will add the term

D(t, z(·)) := 2
(

z(t)⊤Πa + ż(t)⊤Πb

)

×
(

Ãz(t) + Fω(t) + ψ(t)− ż(t)
)

,

where Πa and Πb symmetric matrices in R
2n×2n. Obviously, D is zero along the solutions of (10).

Theorem 3.5 : Let ρ1 be a positive scalar satisfying

L⊤L ≤ ρ1I (26)

Then, for any

z(·) ∈ C0(R,R2n) , h, α, b, ε ∈ R , P,R,Πa,Πb ∈ R
2n×2n

such that z is a solution of (10), h > 0, α > 0, P > 0 and R > 0, the time derivative of V (t, z(·))
in (13) satisfies

V̇ (t, z(·)) ≤ −αV (t, z(·)) + β + ξ(t, z(·))⊤Ωξ(t, z(·)) , (27)
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where

Ω :=













αP−1 + bQz +ΠaÃ+ Ã⊤Πa P
−1 −Πa +ΠbÃ 0 ΠaF Πa

∗ h2R− 2Πb 0 ΠbF Πb

∗ ∗ −he−αhR+ ερQc 0 0
∗ ∗ ∗ −bQ̄ 0
∗ ∗ ∗ ∗ −εI













(28)

and

ξ(t, z(·)) :=













z(t)
ż(t)

z(t)− z(tk)
ω(t)
ψ(t)













, Qc :=

(

I
I

)

C⊤QyC
(

I I
)

, β := bδ̄ + ερ(2 + c) , (29a)

ρ := 2ρ1/λmin(Qy) . (29b)

The following lemma will be needed before the proof of the theorem.

Lemma 3.6: The uncertainty resulting from noise, sampling and quantization is bounded by

‖ψ(t)‖2 ≤ ρ
(

(z(t)− z(tk))
⊤Qc(z(t)− z(tk)) + 2 + c

)

. (30)

Proof : We will begin by computing an upper bound for ∆y (see p. 4). We have

‖∆y(t)‖2Qy
= ‖y(t)− ¯̄y(t)‖2Qy

≤ ‖y(t)− ȳ(t)‖2Qy
+ ‖ȳ(t)− ¯̄y(t)‖2Qy

. (31)

Notice that

¯̄y(t)− ȳ(t) = C(x(t)− x(tk)) + ωy(t)− ωy(tk)

= C
(

I I
)

(z(t)− z(tk)) + ωy(t)− ωy(tk) ,

so

‖ȳ(t)− ¯̄y(t)‖2Qy
≤ (z(t)− z(tk))

⊤Qc(z(t)− z(tk)) + 2 , (32)

where we have used (3) to establish ‖ωy(t)‖
2
Qy

+‖ωy(tk)‖
2
Qy

≤ 2. Substituting (32) and (5) in (31)
gives

‖∆y(t)‖2Qy
≤ (z(t)− z(tk))

⊤Qc(z(t)− z(tk)) + 2 + c . (33)

The norm of ψ then satisfies

‖ψ(t)‖2 =

∥

∥

∥

∥

(

I
−I

)

L∆y(t)

∥

∥

∥

∥

2

= 2∆y(t)⊤L⊤L∆y(t) ≤ 2ρ1‖∆y(t)‖
2 ≤

2ρ1
λmin(Qy)

‖∆y(t)‖2Qy
. (34)

From (34) and (33) we conclude (30). �
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Proof (of Theorem 3.5): Adding the null term D(t, z(·)) + ε‖ψ(t)‖2 − ε‖ψ(t)‖2 to (14) gives

V̇ (t, z(·)) ≤ −αV (t, z(·)) + bδ̄ + ε‖ψ(t)‖2 + η(t, z(·))⊤Wη(t, z(·))+

2
(

z(t)⊤Πa + ż(t)⊤Πb

)

×
(

Ãz(t) + Fω(t) + ψ(t)− ż(t)
)

− ε‖ψ(t)‖2 . (35)

Substituting (30) in (35) establishes

V̇ (t, z(·)) ≤ −αV (t, z(·)) + β + ερ(z(t)− z(tk))
⊤Qc(z(t)− z(tk)) + η(t, z(·))⊤Wη(t, z(·))+

2
(

z(t)⊤Πa + ż(t)⊤Πb

)

×
(

Ãz(t) + Fω(t) + ψ(t)− ż(t)
)

− ε‖ψ(t)‖2 . (36)

Equation (27) is nothing but (36) written in compact form. �

3.3 Main result

The following corollary follows from Theorem 3.5 and Lemma 3.1.

Corollary 3.7: Let

{

α > 0, b > 0, ε > 0, ρ1 > 0, P−1 > 0, R > 0,Πa,Πb, L,K
}

(37)

be a set of control parameters such that

Ω ≤ 0 and L⊤L ≤ ρ1I , (38)

with Ω defined by (28); Qz, Qc, Q̄ and ρ given by (29) and (15). The ellipsoid

E :=

{

z ∈ R
2n : z⊤P−1z ≤

β

α

}

,

with β given by (29), (15) and α = a is an attractive set.

4 Numerical Aspects

Given Corollary 3.7, it is natural to look for a set of parameters (37) such that the attractive
ellipsoid is minimal in some sense. An obvious objective function to minimize is traceP . Un-
fortunately, such problem is strongly nonlinear and difficult to solve, even numerically, so we
will have to settle for a sub-optimal solution. Our goal here is to find a numerically tractable
expression that ensures Ω ≤ 0. More precisely, we seek an expression that is linear in the matrix
parameters, so that the well-known convex tools for matrix inequalities can be applied.
The first step involves applying the Schur complement to several blocks of the original matrix

Ω. In order to achieve this, we first simplify our parameter space by setting Πa = Πb = P−1 and
by restricting P−1 and R to the class of block diagonal matrices of the form

P−1 = diag
(

P−1
1 , P−1

2

)

and R = diag (R1, R2) .

Let us define ΩA := TΩT⊤ with

T = diag
(

P−1
2 P1, I, P

−1
2 P1, I, · · · , I

)

∈ R
10n×10n .
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Since T is non-singular, Ω ≤ 0 is equivalent to ΩA ≤ 0. To ease the notation, we will write ΩA in
terms of the block matrices Aij ∈ R

n×n, with i, j = 1, . . . , 10. Notice that the following elements
of ΩA are nonlinear with respect to P2 and P1:

A11 = P−1
2

(

bP1QP1 + aP1 + P1(A
⊤ +K⊤B⊤) + (A+BK)P1

)

P−1
2

A12 = A⊤
21 = P−1

2 (LC + bP1Q)

A13 = A⊤
31 = P−1

2 (A+BK)P1P
−1
2

A33 = P−1
2

(

h2P1R1P1 − 2P1

)

P−1
2 .

By defining the matrix J :=
(

P1P
−1
2 I 0 · · · 0

)

, it is possible to express ΩA as

ΩA = ΩB + J⊤(bQ)J . (39)

The matrix sub-blocks of ΩB are the same as those of ΩA: Bij = Aij with the exception of

B11 = P−1
2

(

aP1 + P1(A
⊤ + P1K

⊤B⊤) + (A+BK)P1

)

P−1
2

B12 = B⊤
21 = P−1

2 LC ,

which are now simpler than A11 and A12. Using a Schur complement argument and defining
O =

(

0 I 0 · · · 0
)

it can be seen that ΩA is negative semi-definite if and only if

(

ΩB J⊤

J −1
bQ

−1

)

=

(

ΩB O⊤

O −1
bQ

−1

)

+











0
...
0
P1











(

P−1
2 0 · · · 0

)

+











P−1
2
0
...
0











(

0 · · · 0 P1

)

≤ 0 . (40)

According to the Λ-inequality (Poznyak 2008), XY⊤ + YX⊤ ≤ XΛX⊤ + YΛ−1Y⊤ for any

X , Y and non-singular Λ with compatible dimensions. Now, setting X =
(

0 · · · 0 P1

)⊤
, Y =

(

P−1
2 0 · · · 0

)⊤
and Λ = Λ−1

1 in (40) we obtain

(

ΩB J⊤

J −1
bQ

−1

)

≤

(

ΩC O⊤

O −1
bQ

−1 + P1Λ
−1
1 P1

)

, (41)

where the sub-blocks of ΩC are the same as those of ΩB, this is, Cij = Bij , with the exception
of C11 which is

C11 = B11 + P−1
2 Λ1P

−1
2 = P−1

2

(

aP1 + P1(A
⊤ + P1K

⊤B⊤) + (A+BK)P1 + Λ1

)

P−1
2 .

Let us now introduce a new variable, Gf , which will serve as an upper bound for the nonlinear

term −1
bQ

−1 + P1Λ
−1
1 P1 in (41), that is,

−
1

b
Q−1 + P1Λ

−1
1 P1 < Gf . (42)

This implies

(

ΩC O⊤

O −1
bQ

−1 + P1Λ
−1
1 P1

)

≤

(

ΩC O⊤

O Gf

)

. (43)
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Using Schur complements again, it can be readily shown that (42) is equivalent to

(

−Gf − 1
bQ

−1 P1

P1 −Λ1

)

< 0 . (44)

Now, we want to obtain a linear upper bound for ΩC , i.e., a matrix ΩD such that

ΩC ≤ ΩD . (45)

Notice that all the sub-blocks of ΩC are linear in P1 and P−1
2 , except for C11, C13 and C33,

which are of the form PMP, where P can take the value of P1 or P−1
2 and M depends on P1.

These terms can be majored using the Λ-inequality again. Set X = P, Y = I, Λ = −M and
introduce a new term, G, that will serve as an upper bound PMP < G. Then, according to the
Λ-inequality, we have 2P ≤ −PMP −M−1, that is,

2P +M−1 ≤ −PMP . (46)

Now, taking Schur complements, we know that

(

G + 2P −I
−I −M

)

> 0

if and only if −M > 0 and G + 2P +M−1 > 0. Combining (46) with the last equation gives

G − PMP ≥ G + 2P +M−1 > 0 .

In summary, the inequality

(

−G − 2P I
I M

)

< 0 (47)

implies the desired result, PMP < G.
It is natural to propose an ΩD with sub-blocks equal to those of ΩC with the exception of D11,

D13 = D⊤
31 and D33, which are matrix block variables that fulfill some additional restrictions.

The first such restriction is that D13 = D⊤
13. To obtain the remaining constraints, let us write

the upper-left 3n× 3n sub-block matrix of the difference ΩC − ΩD,





C11 −D11 0 C13 −D13

0 0 0
C31 −D31 0 C33 −D33



 =





I
0
0



 (C11 −D11 − C13 +D13)
(

I 0 0
)

+





0
0
I



 (C33 −D33 − C13 +D13)
(

0 0 I
)

+





I
0
I



 (C13 −D13)
(

I 0 I
)

.

It is clear that ΩC − ΩD ≤ 0 if

C11 −
1

2
(C13 + C⊤

13) < D11 −D13

C33 −
1

2
(C13 + C⊤

13) < D33 −D13

1

2
(C13 + C⊤

13) < D13
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Application of (47) to the first inequality shows that

C11−
1

2
(C13+C

⊤
13) = P−1

2

(

aP1 +
P1

2
(A⊤ +K⊤B⊤) + (A+BK)

P1

2
+ Λ1

)

P−1
2 < D11−D13

is equivalent to

(

D13 −D11 − 2P−1
2 I

I aP1 +
P1

2 (A⊤ +K⊤B⊤) + (A+BK)P1

2 + Λ1

)

< 0 (48a)

(note that this inequality is linear with respect to P1 and P−1
2 ). Likewise, applying (47) to the

second inequality,

C33 −
1

2
(C13 + C⊤

13) = P−1
2

(

h2P1R1P1 − 2P1 − (A+BK)
P1

2
−
P1

2
(A⊤ +B⊤K⊤)

)

P−1
2

< P−1
2

(

G0 − (A+BK)
P1

2
−
P1

2
(A⊤ +B⊤K⊤)

)

P−1
2 < D33 −D13

if

(

−2P1 −G0 P1

P1 −h2R1

)

< 0 (48b)

(

−2P−1
2 −D33 +D13 I

I G0 − (A+BK)P1

2 − P1

2 (A⊤ +B⊤K⊤)

)

< 0 . (48c)

Finally,

1

2
(C13 + C⊤

13) = P−1
2

(

(A+BK)
P1

2
+
P1

2
(A⊤ +B⊤K⊤)

)

P−1
2 < D13

if

(

−2P−1
2 −D13 I

I (A+BK)P1

2 + P1

2 (A⊤ +B⊤K⊤)

)

< 0 . (48d)

With these restrictions, inequality (45) holds so

(

ΩC O⊤

O Gf

)

≤

(

ΩD O⊤

O Gf

)

.

Our constraint set is thus given by (44), (48) and

(

ΩD O⊤

O Gf

)

≤ 0 . (49)

It is noteworthy that ΩD is linear in P1 and P−1
2 . However, there exist some bilinear matrix

terms in P1, P
−1
2 , K and L all together. To deal with these and to obtain an LMI (in the matrix

variables), we proceed to define

X1 := P1 , Y1 := KP1 , X2 := P−1
2 and Y2 := P−1

2 L ,



February 19, 2014 13:3 International Journal of Control B24

International Journal of Control 13

So now all the inequalities are linear in the matrix arguments.
A natural objective for the controller is to minimize the volume of the ellipsoid, i.e., to minimize

the trace of P , which amounts to minimizing the objective function tr(X1) + tr(X−1
2 ). This is

still a nonlinear problem. By including the last linear constraint,

(

H I
I X2

)

> 0 , (50)

we can now state the numerically tractable sub-optimal problem:

minimize tr(X1) + tr(H) ,

subject to the constraints X1, X2, H,R1, R2 > 0 and (44), (48), (49) and (50) with respect to
the matrix variables X1, X2, H,R1, R2, D11, D13, D33, Gf , G0 ∈ R

n×n, Y1 ∈ R
n×m, Y2 ∈ R

q×n

and the scalar variables a, b, ρ, ρq, ε. The sub-optimal ellipsoid is defined by

P−1 =

(

X1 0
0 X−1

2

)

.

The controller and observer gains can be obtained uniquely as K = Y1X
−1
1 and L = X2Y2.

Notice that, still, this problem is bilinear in the matrix and scalar variables all together, so we
propose the following algorithm:

fix ρ, ρq and ǫ
set a∗ to a very small value a0
set b∗ to a very small value b0
set T ∗ to a very large value T0
for j = 1 to m do

for i = 1 to n do

repeat

try to solve semidefinite programming problem
increase a∗ by STEP1

until solution is feasible
set Ti to trace(P−1) evaluated in the solution
if Ti < T ∗ then

set T ∗ = Ti
end if

divide STEP1 by 2
end for

for i = 1 to n do

repeat

try to solve semidefinite programming problem
increase b by STEP2

until solution is feasible
set Ti to trace(P−1) evaluated in the solution
if Ti < T ∗ then

set b∗ = bi
end if

divide STEP2 by 2
end for

end for

return a∗ and b∗

(This algorithm can be readily implemented using off-the-shelf software and requires average
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programming skills only.)

5 Numerical Examples

The previous algorithm was implemented in Matlab to exemplify the applicability of our method.
The objective was to design a robust controller based on the previously described method for
two different systems. The first one is a two-dimensional nonlinear system, which dynamics
are include a sign function and also has bounded state and output perturbations. While the
second one is a four-dimensional linear system with bounded uncertainties and perturbations,
its dynamics are modeled as a pair of double integrators.
The algorithm was implemented on a mid-end CPU. The time required to obtain a solution

depends heavily on the selection of the starting values, if the solution exists but there is no
information on the nature of the systems or an idea of the possible values of the solution, the
average solving time will increase notably compared to the case when a set of feasible values is
known. Most of the time the algorithm succeeded even when the starting values where selected
far from a known solution. The algorithm was proposed with simplicity in mind. However, a
faster and optimized version of this algorithm should be possible to device and implement.

5.1 Example 1

Consider the following discontinuous system:

ẋ1 = sign(x2) + υ1

ẋ2 = x1 + 2u+ υ2

¯̄y = x1 + 2x2 + ωy .

Let us assume that |υ1|, |υ2| ≤ 0.1 and that |ωy| ≤ 0.2. These bounds satisfy assumption (i) with
Qx = Qy = I2×2. Using the equivalent transformations discussed in Section 2, we can write the
equivalent system (10) as

ẋ =

(

0 1
1 0

)

x+

(

1
2

)

u+

(

ω1

ω2

)

¯̄y =
(

1 2
)

x+ ωy .

By defining

Qx :=

(

q11 q12
q21 q22

)

it can be seen that

‖f(t, x)−Ax‖2Qx
= q11 (sign(x2)− x2)

2 ≤ q11
(

x22 + 1
)

.

Choosing Qx = Q = I2×2 and selecting δ = 1, assumption (ii) is satisfied. Also, the resulting
system is controllable and observable as needed in assumption (iii). The numerical treatment of
the minimization problem was stated using the following parameters: the sample time interval is
fixed at 0.01 seconds, so we can choose directly h = 0.01, the initial conditions for the dynamic
system are x1(0) = x2(0) = 10 and the quantization constant selected was c = 1. Both, c and
h constant, satisfy assumptions (iv) and (v). For the observer the initial conditions were chosen
as the origin.
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Figure 2. Estimated ellipsoid and system trajectories for Example 1.

Figure 3. Actual and estimated states for Example 1.

Using the algorithm, the observer and the controller gains were obtained as

K =
(

−16.7123 5.1423
)

and L =
(

1.9306 0.9996
)⊤

.

The simulated trajectories are shown in Figs. 2 and 3. The estimated ellipsoidal region is also
shown in Fig. 2. Notice that the estimation is accurate enough since the ellipsoid encloses the
trajectories tightly. An oscillatory effect can be appreciated. This is due to the fact that the
trajectories are confined to a bounded region (because of (27)) while, due to uncertainty, the
trajectories cannot converge to a fixed point. Fig. 3 shows how the estimated states converge
to the actual ones. Finally, Fig. 4 shows a comparison between the control input u and the
measurable output y. It is clear that this output is quantized. The effect of the quantization and
the measurement noise can be appreciated.

5.2 Example 2

For the second example, an optical disk drive system is used. The dual-actuator disk drive system
was modeled as a pair of double integrators (Phillips and Tomizuka 1995). The four states in this
case were the relative position error and its derivative and the tracking error and its derivative.
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Figure 4. Input and output signals for Example 1.

The system is perturbed by ‖ωx‖ ≤ 0.1 and ‖ωy‖ ≤ 0.2

ẋ =









0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0









x+









0 0
10 0
0 0

−10 −20









u+ ωx

¯̄y =

(

1 0 0 0
0 0 1 0

)

x+ ωy .

(51)

The simulation was run using the same sample time h = 0.01, and xi(0) = 5 with i = 1, 2, 3, 4
for initial conditions. Two different quantization constants were considered, the first one was
c = 1 and the second was c = 2.
The observer and the controller gains were obtained as

K =

(

−4.8202 −3.6144 −0.7786 −1.5238
1.4946 1.1088 1.0644 1.1027

)

and L =

(

3.8594 3.7234 0.0000 0.0000
0.0000 0.0000 3.8594 3.7234

)⊤

.

Fig. 5 shows the ellipsoid projection on the x1−x2 plane with the respective trajectories when
c = 1. The first three states and its estimations can be seen in Fig. 6. Both inputs and outputs
are shown in Fig. 7. It is worth pointing out that the outputs in steady state only use the first
level of quantization (±c).
The remaining figures were obtained using a quantization constant c = 2. Certain differences

between the two choices of quantization constants are worth commenting. First, the estimated
ellipsoidal region and the actual convergence region are obviously larger due to a bigger quan-
tization constant effect, as can be seen in Fig. 8. Also, the estimation error is larger (Fig. 9).
Finally, in Fig. 10, although the steady state output still only uses the first level of quantization
±c, it is twice as large as in the first case.
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Figure 5. Ellipsoidal region and system trajectories for Example 2 with c = 1.

Figure 6. First two actual and estimated states for Example 2 with c = 1.

6 Conclusions

In this paper, a new analytical and numerical methodology for robust control design associated
with nonlinear perturbed systems was developed. We also considered sampled-data and quantiza-
tion at the output of these systems. In the model we used, the quantization error was bounded.
The control design strategy proposed in this paper is an extension of the attractive ellipsoid
method. This approach produces a control law such that the existence and an actual charac-
terization of a minimal-size attractive ellipsoid for the closed-loop system can be guaranteed.
The computational implementation of the aforementioned method led us to a complex nonlinear
minimization problem with nonlinear matrix constraints. In this contribution we proposed an
effective relaxation from this initial optimization problem to a semidefinite programming prob-
lem (linear in the matrix variables). The final product was an attractive ellipsoidal region with
a minimal ‘size’.
Finally, this approach can be generalized to systems with delays and networked control systems

with relative ease. It also seems possible to apply the presented control design techniques in
combination with some nonlinear feedback control strategies.
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Figure 7. Input and output signals for Example 2 with c = 1.

Figure 8. Ellipsoid and system trajectories for Example 2 with c = 2.
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