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Abstract: This paper focuses on the discrete-time sliding-mode control problem, that is, given
an uncertain linear system under the effect of external matched perturbations, to design a set-
valued control law that achieves the robust regulation of the plant and at the same time reduces
substantially the chattering effect in both the input and the sliding variables. The cornerstone
is the implicit Euler discretization technique together with a differential inclusion framework
which allow us to make a suitable selection of the control values that will compensate for the
disturbances. Numerical examples confirm the effectiveness of the proposed methodology.
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1. INTRODUCTION

There exists an extensive literature on discrete-time
sliding-mode control which, at this point, can be divided
into two groups. In one group we have the works that
rely on discontinuous control actions, as for example Bar-
toswewicz [1998], Galias and Yu [2007], Gao et al. [1995],
Kaynak and Denker [1993], Spurgeon [1991]. The sliding-
mode control law is discretized using an explicit Euler
technique and is limited by the condition that the ideal
sliding-mode is never reached, leading to concepts such
as quasi sliding, a term that refers to the fact that the
system trajectories will ultimately belong to a bound-
ary layer of the sliding manifold even in the absence of
disturbances. The main problem with the discontinuous
control approach is the susceptibility to the appearance of
chattering. Indeed, at a point of discontinuity the control
law cannot take values lying between its different limits,
so a high frequency switching becomes necessary for main-
taining the system in the sliding phase [Utkin 1992]. It
is thus not surprising to see considerably high levels of
chattering in these schemes.

The central idea among the second group of controllers
is that, similar to the differential inclusions described in
the work of Filippov and Arscott [1988], the discrete-time
system should be governed by a difference inclusion, not
a difference equation [Acary and Brogliato 2010, Acary
et al. 2012, Huber et al. 2016b,c]. These works are based
on the use of set-valued control laws for which a selection
compensating the matched disturbances is possible.

In practical terms, the difference between both approaches
lays on the type of discretization used. Whereas the
former group employs an explicit Euler discretization, the

second one employs an implicit one. In the latter case, the
resulting controller turns out to be Lipschitz continuous,
which results in a substantial reduction of chattering,
Huber et al. [2016b,c], Wang et al. [2015].

The present work falls into the second group and is dedi-
cated to the study of uncertain systems, i.e., we consider
the case where the system matrices are uncertain. The
class of uncertainty considered is large enough to embrace
parametric uncertainty as well as nonlinear unmodeled
dynamics and external perturbations. It is also worth
remarking that the works by Acary and Brogliato [2010],
Acary et al. [2012], Huber et al. [2016b,c] do not consider
uncertainty in the system parameters.

The paper is organized as follows: Section 2 sets the
notation and recalls some concepts from convex analysis.
Section 3 presents, very shortly, the design of continuous-
time sliding-mode controllers for systems with model un-
certainty and external matched disturbances. Section 4
constitutes the main body of the paper. Here, the method-
ology design of discrete-time sliding mode controllers is
presented together with well-posedness and stability re-
sults. Finally, Section 5 shows the effectiveness of the
proposed controller and its superior performance when
compared against explicit Euler discretization techniques.

2. PRELIMINARIES AND NOTATION

Let R
n be a n-dimensional linear space, given with the

classical Euclidean inner product denoted as 〈·, ·〉 and the
corresponding norm ‖ · ‖.
Definition 1. Let f : Rn → R∪{+∞} be a proper, convex,
lower semicontinuous function. The subdifferential of f at
x ∈ Dom f is given by the set
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∂f(x) := {ζ ∈ R
n | 〈ζ, η − x〉 ≤ f(η)− f(x),

for all η ∈ R
n} .

Definition 2. Let f : R
n → R ∪ {+∞} be a proper,

convex, lower semicontinuous function. The proximal map
Proxf : Rn → R

n is the unique minimizer of f(w)+ 1
2‖x−

w‖2, that is,

f(Proxf (x)) +
1

2
‖x− Proxf (x)‖2 =

min
w∈Rn

{

f(w) +
1

2
‖x− w‖2

}

.

Note that for ΨC, the indicator function of the set C,
the proximal map corresponds to the well-know projection
operator, see Hiriart-Urruty and Lemaréchal [1993]. The
following result, extracted from [Bauschke and Combettes
2011, Proposition 12.26], establishes a link between the
two former concepts.

Proposition 3. Let f : Rn → R ∪ {+∞} be a proper, con-
vex, lower semicontinuous function. Then, p = Proxf (x)
if, and only if, x− p ∈ ∂f(p).

Remark 4. It follows from Proposition 3 that the map

(I + α∂f)
−1

is singled valued. More specifically, Proxαf =

(I + α∂f)
−1

. Indeed, assume that yi, i = 1, 2 are such that
yi ∈ (I + α∂f)−1(x). We have, x− yi ∈ α∂f(yi), i = 1, 2.
Hence, Proposition 3 gives y1 = y2 = Proxαf (x).

In the upcoming discussion the conjugate function f⋆ of a
proper function will play an important role. Here we recall
its definition.

Definition 5. Let f : Rn → R ∪ {+∞}. The conjugate of
f is,

f⋆(z) := sup
x∈Rn

{〈z, x〉 − f(x)} .

Theorem 6. (Moreau’s decomposition). Let f : Rn → R ∪
{+∞} be a proper, convex, lower semicontinuous function
and let α ∈ R be strictly positive. Then, for any x ∈ R

n,
the following identity holds:

x = Proxαf (x) + αProxf⋆/α(x/α).

Along this paper we denote the identity matrix in R
n×n

as In. The set Bn := {x ∈ R
n | ‖x‖ < 1} represents

the unit open ball with center at the origin in R
n with

the Euclidean norm. The interior, closure, and boundary
of a set S ⊂ R

n are denoted as intS, clS, and bdS
respectively.

3. A QUICK REVIEW OF CONTINUOUS-TIME
SLIDING-MODE CONTROL

We begin with a quick look at the continuous-time sliding-
mode control problem. To this end, let us consider the
uncertain plant

ẋ = (A+∆A(t, x))x(t)+B(u(t)+w(t, x)), x(0) = x0, (1)

where x(t) ∈ R
n represents the state of the system, u(t) ∈

R is the scalar control input and w(t, x) ∈ R accounts
for external disturbances and unmodeled dynamics. The
matrices A,∆A and B are of the appropriate dimensions.
It is assumed that the matrix ∆A(t, x) is unknown but is
uniformly upper-bounded by

∆A(t, x)Λ∆
⊤
A(t, x) < In (2)

with Λ = Λ⊤ > 0 a known matrix. We also make the
following standard assumptions.

Assumption 7. The pair (A,B) is stabilizable.

Assumption 8. The disturbance term w(t, x) is uniformly
bounded in the L∞ sense, that is, there exists W > 0 such
that supt≥0 ‖w(t, x)‖ ≤ W < +∞.

The first step in the design of sliding-mode controllers
consists in fixing the sliding surface σ(x) = 0 in such
a way that the behaviour of the system constrained to
the sliding surface satisfies the performance requirements.
The second step consists in the design of the control
law that will steer the state towards the sliding surface
and will maintain it there, even in the presence of model
uncertainties and external disturbances. An assumption
concerning the sliding surface is the following.

Assumption 9. The matrix C ∈ R
1×n is such that the

product CB is nonsingular.

The previous assumption ensures the uniqueness of the
equivalent control (see, e.g. Utkin et al. [2009]). Namely, by
considering the sliding surface as the hyperplane σ = Cx,
the equivalent control is computed from the invariance
condition σ̇ = 0 as

C(Axeq +B(ueq + w)) + ∆A(t, x
eq)xeq) = 0 ⇒

ueq = −(CB)−1C (Axeq +∆A(t, x
eq)xeq)− w.

Substitution of the equivalent control into (1) leads to the
expression of the dynamics in sliding phase,

ẋeq =
(

In −B(CB)−1C
)

(A+∆A(t, x
eq))xeq, (3)

from which it becomes clear that the matrix characterizing
the sliding hyperplane plays a role in the reduced system
dynamics. There exists many methods for the design of
the sliding surface, e.g., LQR design [Utkin 1992, Chapter
9], eigenvalue placement [Utkin et al. 2009, Chapter 7],
H∞ control [Castaños and Fridman 2006], linear matrix
inequalities [Polyakov and Poznyak 2011], see also [Shtessel
et al. 2014, Section 2.4.2], among others. Here we relegate
the design of the sliding surface in continuous time to the
background and focus instead on the discrete-time setting.
As mentioned above, the second step consists in designing
the set-valued control law that will bring the system into
the sliding regime. The design procedure is divided into
two steps. Namely, first we compute a control law for the
nominal version of (1) (i.e., ∆A ≡ 0 and w ≡ 0) and then
the set-valued controller that will provide the necessary
robustness. Thus, the control law is set as

u = unom − γ1(x) Sgn(σ), (4)

where unom is a control input for the nominal system and
γ1 : R

n → R+ is a control gain. It is worth remarking
that the trajectories of the closed-loop (1), (4) will reach
the sliding surface σ = Cx in finite time, from where
the reduced system will go asymptotically to the origin
whenever the matrix C is well-designed.

In conclusion, the common methodology design for sliding-
mode controllers in continuous time relies on the appro-
priate design of the matrix C that will make the reduced
system asymptotically stable, whereas the set-valued con-
troller will compensate for all the matched disturbances.
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In the upcoming section we show in detail the analogous
methodology for the implementation of discrete-time slid-
ing mode controllers.

4. DISCRETE-TIME SET-VALUED SLIDING-MODE
CONTROL

The first step consists in obtaining a discrete-time model
of (1) by using Euler’s method, i.e., we take a constant
sampling time h = tk+1 − tk > 0 for all k ≥ 0 and we
obtain

xk+1 = (In + hA)xk + hB(uk + w(k, xk) + h∆A(k, xk)xk.
(5)

In this work we do not study in detail the effect of the
discretization scheme applied to the plant (1). However, we
do make emphasis in the discretization of the set-valued
component of the controller, that is, the discretization
of the signum multifunction. Along all this section we
also consider Assumptions 7 through 8, together with
the bound on ∆A(t, x) expressed by (2). Henceforth,
because of space limitations, we will omit the arguments
of the uncertainties/disturbances ∆A(k, xk) and w(k, xk).
The proof of the incoming proposition can be found in
Miranda-Villatoro et al. [2016].

Proposition 10. Assumption 7 implies that, for some a > 0
such that 0 < 2ha < 1, there exists a symmetric positive
definite matrixX ∈ R

n×n satisfying the matrix inequality:

B⊤
⊥

(

AX +XA⊤ + 2aX
)

B⊥

+ hB⊤
⊥

(

XA⊤B⊥

(

B⊤
⊥XB⊥

)−1
B⊤

⊥AX
)

B⊥ < 0, (6)

where B⊥ ∈ R
n×(n−1) is a full rank orthogonal comple-

ment of the matrix B, that is, B⊤B⊥ = 0.

The following result establishes a bound for ∆A that will
be useful in the forthcoming sections.

Proposition 11. Let X = X⊤ > 0 be such that

X − In > 0. (7)

Then,

Λ−1 −∆⊤
AB⊥(B

⊤
⊥XB⊥)

−1B⊤
⊥∆A > 0. (8)

Proof. The proof follows from Assumption 2 and the
Schur’s complement formula.

In the sequel we will assume that X satisfies (6) together
with (7) and consequently (8) also holds.

4.1 Design of the sliding surface

It is common to consider the sliding surface for the
discrete-time design as the same as in its continuous-
time counterpart. However, as is pointed out in Spurgeon
[1991], it is more suitable to make a redesign of such
surface which guarantees, in the presence of uncertainties,
the desired performance of the closed-loop discrete-time
system. Thus, letting

{

xk ∈ R
n|Sxk = 0, S ∈ R

1×n
}

be
such linear surface, we make the following assumption.

Assumption 12. The product SB is nonsingular.

Analogous to the continuous-time context, we start com-
puting the equivalent control in order to see how the
disturbance affects the sliding regime. In the discrete-time

case, the necessary sliding condition σ̇ = 0 is transformed
into the fixed-point condition σk+1 = σk, from which we
obtain the equivalent control as

ueq
k =

1

h
(SB)−1 (σk − S(In + hA)xk − hS∆Axk)− wk

(9)

Hence, the equivalent closed-loop dynamics in ideal sliding
motion results in:

xeq
k+1 =

(

In −B(SB)−1S
)

(In + hA+ h∆A)x
eq
k

+B(SB)−1σk. (10)

From (10) it becomes clear that the structure of the sliding
surface will be similar to that in the continuous-time
framework, c.f. (3). Throughout this section we set

S = (B⊤X−1B)−1B⊤X−1, (11)

where X = X⊤ > 0 is an n × n matrix that satisfies
(6) and (7). See Miranda-Villatoro et al. [2016] for a
detailed account about this selection. It is noteworthy that
the sliding hyperplane depends implicitly on the sampling
time h > 0, thus different samplings will lead to different
sliding surfaces, a property that is not obtained by direct
discretization of the continuous-time sliding surface σ =
Cx.

4.2 Controller design

In this subsection we formulate the discrete version of the
two-step design methodology mentioned in the previous
section. Namely, we compute a control law of the form
uk = unom

k + usv
k , where unom

k is a control law for the
nominal plant, i.e., (5) with ∆A(k, xk) ≡ w(k, xk) ≡ 0,
whereas usv

k , designed as a set-valued map, is responsible
for compensating the matched disturbances. We will show
that the implicit Euler discretization applied to usv

k inher-
its the robustness of the signum multifunction.

The first step consists in computing the nominal control
using the fixed-point condition σk+1 = σk, which leads to

unom
k =

1

h
(SB)−1 (σk − S(In + hA)xk) . (12)

Substitution of (12) into the discrete-time dynamics (5)
yields

xk+1 =
(

In −B(SB)−1S
)

(In + hA)xk +B(SB)−1σk

+ hB(usv
k + wk) + h∆Axk. (13)

The next step consists of the decoupling of the matched
and mismatched parts of the disturbances. To this end,
consider the coordinate transformation zk = Txk with T
given as

T =

[

B⊤
⊥

(B⊤X−1B)−1B⊤X−1

]

. (14)

After simple computations we obtain a closed-loop system
in the so-called regular form,

z1k+1 = B⊤
⊥(In + hA+ h∆A)XB⊥

(

B⊤
⊥XB⊥

)−1
z1k

+ B⊤
⊥(In + hA+ h∆A)Bσk (15a)

σk+1 = σk + h(usv
k + wk + ηmk ), (15b)

where the term ηmk refers to the matched part of the
disturbance ∆A(k, xk)xk, i.e.,

ηmk = S∆AT
−1zk = (B⊤X−1B)−1B⊤X−1∆AT

−1zk.
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It is clear that the disturbance term ηmk satisfies a linear
growth condition (since the term ∆A(t, x) is uniformly
bounded, c.f. (2)). Thus, the following holds.

Proposition 13. The disturbance term ηmk satisfies the

linear growth condition |ηmk | ≤
√
κ̄‖zk‖ for some κ̄ > 0

and finite.

The set-valued controller We continue with the design of
the controller’s multivalued part. This is where we depart
from the explicit Euler discretization scheme. Because of
the implicit discretization method employed, it is possible
to make a selection for the values of the controller that will
compensate the disturbances that affect the closed-loop
system. Now we introduce the implementable controller
usv
k using the implicit discretization approach studied in

Acary and Brogliato [2010], Acary et al. [2012], Huber
et al. [2016a] and tested experimentally in Huber et al.
[2016b,c], Wang et al. [2015]. The approach has proved
to be very efficient in terms of the chattering alleviation.
Roughly speaking, we consider a discrete-time scheme by
creating a virtual nominal system from where the selection
process is achieved. Next, the controller computed from
the virtual nominal system is applied to the original
discrete-time plant. Formally, we consider the extended
system

z1k+1 = B⊤
⊥(In + hA+ h∆A)XB⊥

(

B⊤
⊥XB⊥

)−1
z1k

+B⊤
⊥(In + hA+ h∆A)Bσk (16a)

σk+1 = σ̃k+1 + h(wk + ηmk ) (16b)

σ̃k+1 = σk + husv
k (16c)

−usv
k ∈ γ1σ̃k+1 + γ2 Sgn(σ̃k+1), (16d)

where γi ∈ R, i = 1, 2, are positive gains specified below.
System (16) represents the implementable discrete-time
dynamics. The variable σ̃k+1 may be seen as the state of
a nominal, undisturbed system, or as a dummy variable
used to compute usv

k . In this approach, the selection of
the values of the controller is made by using the virtual
undisturbed system (16c)-(16d), where the perturbation
term is implicitly taken into account through the use of
the real state σk in the computation of (16c). Considering
the subsystem (16c)-(16d), we have

σk − σ̃k+1 ∈ hγ1σ̃k+1 + hγ2 Sgn(σ̃k+1)

⇔ σk

1 + hγ1
∈
(

I +
hγ2

1 + hγ1
Sgn)

)

(σ̃k+1) (17)

⇔ σ̃k+1 = Prox hγ2
1+hγ1

f

(

σk

1 + hγ1

)

. (18)

It follows from (16c) that the input selection applied to
the system is explicitly given by

usv
k = − 1

h

(

σk − Prox hγ2
1+hγ1

f

(

σk

1 + hγ1

))

= − 1

1 + hγ1

(

γ1σk + γ2 Proj[−1,1]

(

σk

hγ2

))

, (19)

where, in the last inequality, we have used Theorem 6 once
again. Equation (19) shows the non-anticipation and the
uniqueness of the control law (16d). Hence, the discrete-
time closed-loop subsystem (16b)-(16d) is equivalent to

σk+1 = σ̃k+1 + h(wk + ηmk )

σ̃k+1 = Prox hγ2
1+hγ1

f

(

σk

1 + hγ1

)

.
(20)

In this context the variable σ̃k is called the discrete sliding
variable and, when σ̃k∗+n = 0 for all n ≥ 1 and some
k∗ < +∞, we say that the system is in the discrete-time
sliding phase [Huber et al. 2016a].

Remark 14. The concept of discrete-time sliding phase
used in this work stands in contrast with the concept
of ideal sliding phase. The ideal sliding phase condition
depends on the original variable σk and it is never reached
in a real application, whereas the discrete-time sliding
phase condition, defined for σ̃k, is attained after a finite
number of steps (see Corollary 19).

Remark 15. Even though it may seem cumbersome at
first sight, the implicit discretization provides an efficient
methodology to regularize the signum multifunction. Note
that the controller (19) is the sum of two functions, a
linear one and a saturation (see Figure 1). Note also that
the regularization is not arbitrary, as it depends on the
sampling time h > 0 and has interesting features. Namely,
it yields the discrete-time sliding regime after a finite
number of steps. Moreover, when the discrete-time sliding
phase is reached, the control input becomes independent
of the gains γ1 and γ2 (this is in perfect analogy with the
continuous-time scenario) and it is indirectly estimating
wk + ηmk with a one-step delay (see Lemma 16, Corollary
17, Theorem 18 and Corollary 19 below).

-5 -4 -3 -2 -1 0 1 2 3 4 5

-30

-20

-10

0

10

20

30

Fig. 1. Control law (19) obtained from the use of the
implicit Euler discretization algorithm with h = 50
ms, γ1 = 5, γ2 = 10 and σ ranging from −5 up to 5.

4.3 Stability of the closed-loop system

In this section we prove the stability of the entire closed-
loop system (16). With this end in mind, we start with a
result characterizing the discrete-time sliding-phase con-
dition (σ̃k+1 = σ̃k = 0 for all k ≥ k∗ and some 0 < k∗ <
+∞) in terms of σk.

Lemma 16. Consider the subsystem (20). The following
two statements are equivalent:

1) σk ∈ hγ2 Sgn(0) for some k ∈ N.
2) σ̃k+1 = 0.

In addition, if for some k∗ ∈ N, σ̃k∗+1 = 0, then σ̃k∗+p = 0
for all p ≥ 1, whenever wk + ηmk ∈ γ2 Sgn(0) for all k ≥ k∗.

Proof. It follows from (20) and the characterization of
the proximal map given in Proposition 3.
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The following result supports the use of the scheme pro-
posed in Acary and Brogliato [2010], Acary et al. [2012].

Corollary 17. Let the matched disturbance wk + ηmk ∈
γ2 Sgn(0) for all k ≥ k∗ and some 0 < k∗ < +∞. Then,
in the discrete-time sliding phase the control input usv

k
satisfies

usv
k = −wk−1 − ηmk−1.

In words, the input obtained from the implicit scheme
(16) compensates for the disturbance with a delay of one
step once the discrete-time sliding phase has been reached.
Moreover, during such phase usv

k is independent of the
gains γi, i = 1, 2, a crucial fact that was experimentally
verified in Huber et al. [2016b,c]. This last property
turns out to be fundamental in the application of the
control scheme (16) since it helps to drastically reduce the
chattering effect of the closed-loop system.

Practical stability of the difference equation (16) is proved
in the following theorem whose complete proof can be
consulted in Miranda-Villatoro et al. [2016].

Theorem 18. Let Assumptions 7-12 hold and consider the
closed-loop system (16), were X = X⊤ > 0 and γ1 > 0
are such that

Q̄ :=







Q̄11 −1

2
B⊤

⊥AB − Q̄⊤
12

−1

2
B⊤A⊤B⊥ − Q̄12 Q̄22






> 0, (21)

where

Q̄11 := B⊤
⊥

(

aX − In − 1

2
XΛ−1X

− h
(

2XΛ−1X +XA⊤B⊥G
−1B⊤

⊥AX
)

)

B⊥,

Q̄12 := h
2B

⊤A⊤B⊥G
−1B⊤

⊥AXB⊥, and

Q̄22 := γ1 −
1

2
B⊤Λ−1B

− hB⊤

(

2Λ−1 +
3

2
A⊤B⊥G

−1B⊤
⊥A

)

B.

hold, where G = B⊤
⊥XB⊥. In addition, let Lc ⊂ R

n be the
compact set

Lc :=

{[

z1

σ

]

∈ R
n

∣

∣

∣

∣

1

2
z1⊤

(

B⊤
⊥XB⊥

)−1
z1 +

1

2
σ2 ≤ c2

}

.

(22)

For any initial condition z0 =
[

z1⊤0 σ0

]⊤
choose c > 0

such that z0 ∈ Lc. Choose any neighborhood of the origin.
Then, there exists h > 0 small enough and fixed such that,
for all γ2 > 0 satisfying

γ2 ≥ β +W + (
√
κ̄+ 2hγ2

1)z̄ (23)

with z̄ := max {‖z‖, z ∈ Lc}, the state of the discrete-
time closed-loop system (16a)-(16d) will be ultimately con-
tained in such neighborhood. In other words, the system
is semi-globally practically asymptotically stable.

From Theorem 18 we conclude that the trajectories of the
closed-loop system (16) are uniformly bounded (since they
belong to the compact set Lc). From this property we
derive the following result.

Corollary 19. Let all conditions and assumptions of The-
orem 18 hold. Let also the gain γ2 > 0 satisfy

γ2 ≥ β+(1+α)(r+W+
√
κ̄z̄)+max

{

2hγ1z̄,
(W +

√
κ̄z̄)2

r

}

(24)
for some constants β, r > 0. Then, there exists k0 =
k0(α, r) > 0, which is finite and such that σ̃k0

= 0.
Moreover, σ̃k = 0 for all k ≥ k0, that is, the discrete-time
sliding phase is reached after a finite number of steps.

In conclusion, we have shown how the implicit discretiza-
tion approach can deal with uncertainties in the sys-
tem in the same way that a continuous-time sliding-
mode controller does. Moreover, the resulting discrete-
time closed-loop system inherits the robustness property
of the continuous-time setting and, as will be revealed
in the upcoming section, the implicit approach reduces
substantially the chattering in both the input and sliding
variables when compared with the explicit discretization
approach.

5. NUMERICAL EXAMPLE

This section is devoted to show the performance obtained
when the control law described in the previous section
is implemented. Let us start considering the benchmark
system

ẋ1 = bx2

ẋ2 = u+ w,
(25)

where x ∈ R
2 is the state of the system, the term w ∈ R

accounts for external disturbances and the parameter b ∈
R is assumed constant but unknown.

Following the design methodology exposed in the previous
section, we set the sampling time h = 10 ms and, for
simulation purposes, we set x(0) = [−3, 3]⊤, b = 1+δb with
δb = 0.5 and w(t) = 2 sin(t) sin(πt). Using the software
tool cvx [Grant and Boyd 2014] together with the solver
SeDuMi [Sturm 1999] we solve (6), (7) and (21). We obtain

γ1 = 4.7890, X =

[

2.0546 −4.2843
−4.2843 21.1234

]

, S = [2.0852 1] .

Now, setting γ2 = 10, we apply the discretized control
input given by (19) to the continuous.-time plant (25)
by using a zero-order-hold mechanism for the coupling
between the continuous-time and discrete-time signals.
The results are depicted in Figure 2 (the sampled values
uk are linearly interpolated in the plot).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-15

-10

-5

0

5

10

15

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-3

-2

-1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Fig. 2. Time trajectory of the piecewise linear control input
and the state of the closed-loop system (25), (19)
with sampling time h = 10 ms and gains γ1 = 4.789,
γ2 = 10.

In order to compare the results obtained, we also consider
the discrete-time control law obtained form the application
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of the explicit Euler discretization. Namely, we consider
the control law

u∗
k = −γ1σk − γ2

σk

|σk|+ 0.001
. (26)

It is noteworthy that in this case we replace the set-
valued signum map with a single-valued function that
is a regularization of the former. The simulation results,
depicted in Figure 3, reveal that the controller proposed
in this work has a superior performance than the explicit
discretization with an arbitrary regularization.
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Fig. 3. Time trajectories of the closed-loop system (25),
(26) with sampling time h = 10 ms and gains γ1 =
4.789, γ2 = 10.

6. CONCLUDING REMARKS

We presented a methodology for designing discrete-time
sliding-mode controllers with complex uncertainty in the
system. We dealt with parametric and matched external
disturbances. It was shown that the use of the implicit
discretization for the set-valued part of the controller is
well-posed and enables us to uniquely choose a value from
the image that will compensate the disturbances. The
advantage of making a selection rather than switching
is translated into the suppression of the chattering ef-
fect, confirming previous analytic and experimental results
obtained in a less general framework not encompassing
parametric uncertainties.
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