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passivity, an extended notion of classical passivity. The property of relative passivity is then used
to build simple, yet robust and globally stable, Proportional plus Integral controllers. Copyright
c© 2008 IFAC.
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1. INTRODUCTION

In this note, we look at the problem of global output
regulation of nonlinear RLC networks using Proportional
plus Integral (PI) controllers. Besides their simplicity and
widespread popularity, it is well known that PI control
is robust vis–à–vis parameter uncertainty—due to the
integral action that is necessary to reject constant dis-
turbances, even in the nonlinear context (Byrnes et al.,
1997). The main contribution of this note is to show that
for a large class of nonlinear RLC circuits with regulated
voltage and current sources we can exploit the property
of passivity to ensure that the problem in question can
be solved with a simple PI controller around the sources
port variables. This brief is a sequel of Jayawardhana et al.
(2006), where we investigated the important property of
relative passivity of general nonlinear systems and applied
it for PI stabilization of a restricted class of RLC circuits.

We show that a very large class of RLC circuits enjoys the
relative passivity property and can, therefore, be stabilized
via PI control. Instrumental for this work is the use of
port–Hamiltonian models to describe the RLC networks.
This allows us to establish in a straightforward manner the
property of relative passivity and identify some additional
assumptions on the characteristic functions of the circuit
elements that are sufficient to make the stability result
global.

The search for energy (and power) based Hamiltonian
models for physical systems with external ports and (possi-
bly nonlinear) dissipation is interesting in its own right and
has attracted considerable attention in the last decades.
One way to obtain such models is to start from a Brayton–

Moser (Brayton and Moser, 1964a,b; Weiss et al., 1998)
or a Lagrangian formulation and then perform the neces-
sary transformations to arrive at a Hamiltonian descrip-
tion (Chua and McPherson, 1974; Blankenstein, 2005). A
critical assumption in this procedure is that the charac-
teristics of the network components are bijective. To avoid
this limitation we prefer, in the spirit of network modeling,
to proceed from the port–Hamiltonian lossless models of
Maschke et al. (1995), see also Bernstein and Liberman
(1989), and add the required sources and dissipation ter-
minations.

2. PORT-HAMILTONIAN FORMULATION OF
NONLINEAR RLC NETWORKS

The purpose of this section is to set the energy-based
models that will be central in the subsequent analysis.
A direct constructive method for obtaining Hamiltonian
models for LC circuits has been proposed by Bernstein
and Liberman (1989). Following the suggestion of Maschke
et al. (1995), in this section we extend this method by
adding ports to account for voltage and currents sources
and resistive elements, as shown in Figure 1. 1

We consider RLC networks satisfying the following as-
sumptions.

Assumption 1. Capacitors are charge controlled and in-
ductors are flux controlled with characteristics given by

vq = v̂q(q) and iφ = îφ(φ) , (1)

where q, vq ∈ R
nq are the capacitors charges and voltages,

and φ, iφ ∈ R
nφ are the inductors fluxes and currents.

1 The inclusion of resistive ports was independently proposed by B.
Maschke and published in Maschke (1998) without a proof.
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Fig. 1. An RLC network with sources and dissipation
elements viewed as ports.

Furthermore, v̂q(q) and îφ(φ) have symmetric Jacobians—
that is, they are gradients of scalar functions.

The first condition of this assumption allows us to write
the electric and magnetic energies as functions of q and φ,
i.e.,

Eq(q) =

∫ q

0

v̂⊤

q (ξ)dξ + Eq(0)

and

Eφ(φ) =

∫ φ

0

î⊤φ (ξ)dξ + Eφ(0) ,

while the second one guarantees that these functions do
not depend on the integration path. This is of course au-
tomatically satisfied if the energy-storing elements are all
single-port. To define the rest of the network’s components
we denote by

vic = v̂ic(iic), iic, vic ∈ R
nic

and

ivc = îvc(vvc), vvc, ivc ∈ R
nvc

the current and voltage controlled resistors. Time-varying
voltage and current sources are represented by vvs ∈ R

nvs

and iis ∈ R
nis respectively.

Assumption 2. The graph G associated to the network has
a tree T containing all capacitors, voltage sources and
current controlled resistors. For future reference, denote
by L the set of links corresponding to T .

This assumption excludes loops formed exclusively by
capacitors and/or voltage sources as well as cut sets
formed exclusively by inductors and/or current sources.
This in turn means that we can choose φ, q, vvs and iis
independently without violating Kirchhoff’s laws.

It is possible to write Kirchhoff’s voltage law in compact
form as Bv = 0, where B is the fundamental loop matrix
and v is the vector of branch voltages (Desoer and Kuh,
1969). Moreover, if v is partitioned as v = col(vL, vT ),
where vL and vT are the branch voltages of L and T
respectively, then B takes the form B = [I F ] (with I
and F of appropriate dimensions). If we further partition
vL, vT and F as 2

2 The negative sign of the voltage-sources indicates that voltage
drops across these branches are opposite to current flow.

vL =

[

vφ

vis

vvc

]

, vT =

[

v̂q(q)
−vvs

v̂ic(iic)

]

and

F =

[

Fφ−q Fφ−vs Fφ−ic

Fis−q Fis−vs Fis−ic

Fvc−q Fvc−vs Fvc−ic

]

,

then, because of Faraday’s law (vφ = φ̇), we can write

φ̇ =−Fφ−q v̂q(q) + Fφ−vsvvs − Fφ−icv̂ic(iic) (2a)

vis =−Fis−q v̂q(q) + Fis−vsvvs − Fis−icv̂ic(iic) (2b)

vvc =−Fvc−q v̂q(q) + Fvc−vsvvs − Fvc−icv̂ic(iic) (2c)

Similarly, we can partition the currents as i = col(iL, iT )
with

iL =





îφ(φ)
−iis

îvc(vvc)



 , iT =

[

iq
ivs

iic

]

and write Kirchhoff’s current law as i = B⊤iL. Simple ma-
trix bookkeeping, together with the Charge Conservation
principle (iq = q̇) shows that

q̇ = F⊤

φ−q îφ(φ) − F⊤

is−qiis + F⊤

vc−q îvc(vvc) (3a)

ivs = F⊤

φ−vsîφ(φ) − F⊤

is−vsiis + F⊤

vc−vsîvc(vvc) (3b)

iic = F⊤

φ−icîφ(φ) − F⊤

is−iciis + F⊤

vc−icîvc(vvc) . (3c)

Setting E = Eφ + Eq and noting that v̂q(q) = ∇qE and

îφ(φ) = ∇φE , we can write (2) and (3) as the port-
Hamiltonian system (van der Schaft, 2000)

ẋ = J∇xE + g1u1 + g2u2(y2) (4a)

y1 = g⊤1 ∇xE + h11u1 + h12u2(y2) (4b)

y2 =−g⊤2 ∇xE + h⊤

12u1 + h22u2(y2) , (4c)

with state x = col(φ, q), inputs u1 = col(vvs, iis) and

u2 = col(v̂ic(iic), îvc(vvc)), outputs y1 = col(ivs, vis) and
y2 = col(iic, vvc). The system parameters are

J =

[

0 −Fφ−q

F⊤

φ−q 0

]

g1 =

[

Fφ−vs 0
0 −F⊤

is−q

]

g2 =

[

−Fφ−ic 0
0 F⊤

vc−q

]

h11 =

[

0 −F⊤

is−vs

Fis−vs 0

]

h12 =

[

0 F⊤

vc−vs

−Fis−ic 0

]

h22 =

[

0 F⊤

vc−ic

−Fvc−ic 0

]

.

A feature of the network representation (4) is that the
power-flow relationship is clearly revealed. Indeed, the
time derivative of the energy is 3

Ė =∇E⊤(J∇E + g1u1 + g2u2)

=∇E⊤J∇E + (y1 − h11u1 − h12u2)
⊤u1 −

− (y2 − h⊤

12u1 − h22u2)
⊤u2 .

3 For ease of notation, whenever clear from the context, we drop the
sub-index from the gradient operator, e.g., we write ∇E instead of
∇xE.
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Fig. 2. An RLC circuit.

By noting that J , h11 and h22 are skew symmetric, we
verify that

Ė = y⊤

1 u1 − y⊤

2 u2 , (5)

which shows that the rate at which the stored energy
increases equals the difference between the power delivered
by the sources and the power dissipated by the resistors.

Remark 1. Notice that for system (4) to be well defined, it
is necessary that a unique y2 —solution of (4c)— exists. In
this brief we assume that such a y2 exists. The interested
reader is referred to Stern (1966); Roska (1981), where
sufficient conditions for existence and uniqueness can be
found.

Remark 2. If the characteristics of inductors and capaci-
tors (1) are bijective it is possible to relax Assumption 2
by finding a reduced equivalent network containing no
inductor cut sets or capacitor loops. A precise notion of
equivalence, as well as the explicit procedure to carry out
the transformation can be found in Sangiovanni-Vicentelli
and Wang (1978), see also Cahill (1969). Note, however,
that in the general nonlinear case, practical use of these
procedures is impeded by the requirement of an explicit
solution of (4). An alternative way to relax Assumption 2
is to enforce Kirchhoff’s laws using the notion of port-
Hamiltonian models with constraints (Jeltsema and Scher-
pen, 2003).

2.1 Example

As an example, consider the circuit shown in Figure 2. We
model the diode as a nonlinear, voltage controlled resistor
characterized by

ivc1 = Is1

(

exp

(

vvc1

VT

)

− 1

)

,

where Is1 is the saturation current and VT = 25mV.
The other dissipative elements are, a linear conductance
governed by ivc2 = Gvvc2 and the linear resistor vic = Riic.
The nonlinear inductor, described by

iφ = Isφ
tanh

(

φ

δφ

)

,

saturates at a current Isφ
and has, at the origin, an incre-

mental inductance of δφ/Isφ
. For simplicity, we consider

linear capacitors of the form vq1
= q1/C1 and vq2

= q2/C2.

The directed graph corresponding to the circuit is given
in Figure 3. The tree that satisfies Assumption 2 has been
highlighted with thick lines.

The energy of the circuit is given by

E = Isφ
δφ ln

(∣

∣

∣

∣

cosh

(

φ

δφ

)∣

∣

∣

∣

)

+
q2
1

2C1

+
q2
2

2C2

+ E(0) (6)

vvsivc1

ivc2
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vq2
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–

–

–
–

+

+

+

+

Fig. 3. Directed graph corresponding to the circuit of Fig-
ure 2. The thick straight lines represent the branches
of T . The thin arcs represent the links that belong to
L.

and its gradient by

∇E =

[

Isφ
tanh(φ/δφ)
q1/C1

q2/C2

]

.

Recall that F = {Fλ−τ}, λ ∈ L, τ ∈ T is constructed
according to the following rule:

Fλ−τ =



















1 if τ is in the loop formed by λ and
their directions are equal.

0 if τ is not in the loop formed by λ.
−1 if τ is in the loop formed by λ but

their directions are opposite.

.

Since there are no current sources, the matrix F reduces
to

F =

[

Fφ−q Fφ−vs Fφ−ic

Fvc−q Fvc−vs Fvc−ic

]

=





−1 1 0 0
1 0 1 1
0 −1 0 0



 .

Finally, equation (4) becomes





φ̇
q̇1

q̇2



 =

[

0 1 −1
−1 0 0
1 0 0

]

∇E +

[

0 0 0
0 1 0
0 0 −1

]

u2 (7a)

ivs = [0 1 0]u2 (7b)
[

iic
vvc1

vvc2

]

=

[

0 0 0
0 −1 0
0 0 1

]

∇E +

[

0
1
0

]

vvs +

[

0 1 0
−1 0 0
0 0 0

]

u2 , (7c)

where

u2 = û2(y2) =

[

Riic
Is1 (exp (vvc1/VT) − 1)

Gvvc2

]

.

3. RELATIVE PASSIVITY AND GLOBAL OUTPUT
REGULATION VIA PI CONTROL

In this section, we study the problem of global output
regulation of RLC networks described by (4). We will ex-
ploit their port–Hamiltonian structure to show that, under
some suitable additional conditions on their characteristic
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functions, the problem can be solved with a simple PI
controller.

It is well known (van der Schaft, 2000) that output
regulation to zero of systems of the form

ẋ = f(x) + g(x)u, y = h(x), (8)

is relatively simple if the map u 7→ y is passive with a
non–negative storage function. That is, if there exists a
scalar function V (x) ≥ 0 such that V̇ ≤ u⊤y. In this case,
a simple proportional controller, u = −KP y with KP =
K⊤

P > 0, ensures that (along all bounded trajectories)
y(t) → 0. Regulation will be global if the storage function
is radially unbounded, which ensures boundedness of all
trajectories.

It is widely known that RLC networks consisting of passive
inductors, capacitors and resistors are passive (Desoer and
Kuh, 1969). This can be readily seen for circuits described
by (4), using (5), y⊤

2 u2 ≥ 0, and the fact that E is non–
negative for passive inductors and capacitors. In most
practical applications of RLC circuits the control objective
is not to drive the output to zero but to a desired value
y⋆
1 6= 0. In this case it is natural to look for passivity

relative to y⋆
1 and it’s corresponding input (Desoer and

Vidyasagar, 1975). More precisely, instead of looking for
passivity of the map u1 7→ y1, we look for passivity of the
map ũ1 7→ ỹ1, where ũ1 , u1 −u⋆

1, ỹ1 , y1 − y⋆
1 and u⋆

1, x
⋆

satisfy

0 = J∇E⋆ + g1u
⋆
1 + g2u2(y

⋆
2) (9a)

y⋆
1 = g1∇E⋆ + h11u

⋆
1 + h12u2(y

⋆
2) (9b)

y⋆
2 =−g2∇E⋆ + h⊤

12u
⋆
1 + h22u2(y

⋆
2) (9c)

with ∇E⋆ , ∇E
∣

∣

x=x⋆ for some y⋆
2 .

Passive linear systems are passive relative to any equilib-
rium input–output pair (u⋆

1, y
⋆
1), a property that is simply

revealed by shifting the origin in the state space model (8)
and noting that the storage function for the map u 7→ y
will also qualify as storage function for ũ 7→ ỹ. Although
this is in general not true for nonlinear systems (Jayaward-
hana et al., 2006), it follows from Assumption 2 that the

voltage of each element of vL (in particular those of φ̇) is
a linear function of the voltages of vT (cf. (2a)). Likewise,
the current of each element of iT (in particular those of q̇)
is a linear function of the currents of iL (cf. (3a)). This
known fact (Chua and Green, 1976) is nicely captured
in (4a) and suggests that for this class of RLC networks,
relative passivity holds. To prove it we need one last
assumption.

Assumption 3. The characteristics of the inductors and
capacitors are strictly increasing and continuously dif-
ferentiable. Those of the resistors are monotone non-
decreasing. 4

Lemma 1. Under Assumption 3 the map ũ1 7→ ỹ1 is
passive with the positive definite storage function

H(x) , E(x) − (x − x⋆)⊤∇E⋆ − E(x⋆) ,

which is, furthermore, strictly convex.

4 Recall that f : R
n → R

n is monotone non-decreasing if (a −

b)⊤(f(a) − f(b)) ≥ 0, ∀ a, b ∈ R
n. It is strictly increasing if the

inequality is strict whenever a 6= b.

Proof. Since ∇E = col(̂iφ(φ), v̂q(q)) and the inductors
and capacitors characteristics are strictly increasing we get
that E is strictly convex (Hiriart-Urruty and Lemaréchal,
1993, p.185). It is immediately verified that

H(aλ + (1 − λ)b) − [λH(a) + (1 − λ)H(b)] =

E(aλ + (1 − λ)b) − [λE(a) + (1 − λ)E(b)] ,

which proves that strict convexity of E is equivalent to
strict convexity of H. Moreover, since ∇H(x⋆) = 0,
H(x⋆) = 0 is a unique global minimum and therefore H is
positive definite (with respect to x⋆).

The network (4) can be written in terms of ũ and ỹ as
follows

ẋ = J∇E + g1u
⋆
1 + g1ũ1 + g2u

⋆
2 + g2ũ2

= J(∇E −∇E⋆) + g1ũ1 + g2ũ2

ỹ1 = g⊤1 (∇E −∇E⋆) + h11ũ1 + h12ũ2

ỹ2 =−g⊤2 (∇E −∇E⋆) + h⊤

12ũ1 + h22ũ2 ,

where the second line is due to (9a). The derivative of H
is then obtained as before:

Ḣ = (∇E −∇E⋆)⊤(J(∇E −∇E⋆) + g1ũ1 + g2ũ2)

= ỹ⊤

1 ũ1 − ỹ⊤

2 ũ2 . (10)

Finally, the monotonicity of the resistors leads to Ḣ ≤
ỹ⊤
1 ũ1.

Remark 3. Strict convexity of E might seem too strong
if all that we need is an H bounded from below. The
reason for imposing strict convexity is that, together with
the existence of a minimum, it implies radial unbounded-
ness (Jayawardhana et al., 2006). This will prove useful for
global stabilization later on.

As indicated above, the output of a passive system can
be regulated to zero with a proportional feedback. In the
present context this evokes a control law of the form ũ1 =
−KPỹ1, whose implementation u1 = −KPỹ + u⋆

1 clearly
requires the exact value of the feed-through term u⋆

1. The
latter —obtained from the solution of (9)— needs the
precise knowledge of the system’s parameters rendering
the controller highly non–robust. This problem can be
circumvented by the use of an integral action, as shown
in the following theorem.

Theorem 2. Consider network (4). Under Assumption 3
the PI controller

ξ̇ =−ỹ1 (11a)

u1 = KIξ − KPỹ1 , (11b)

with KI = K⊤
I > 0 and KP = K⊤

P > 0, ensures that for
all initial conditions, y1(t) converges asymptotically to y⋆

1 ,
that is,

lim
t→∞

y1(t) = y⋆
1 .

Moreover, it globally stabilizes the equilibrium point
(x⋆, ξ⋆ , K−1

I u⋆). 5 If in addition, the closed-loop sys-
tem (4), (11) satisfies the detectability condition

ỹ1(t) ≡ 0 =⇒ lim
t→∞

(x(t), ξ(t)) = (x⋆, ξ⋆) , (12)

then the equilibrium is globally asymptotically stable.
5 By global stability we mean stability in the sense of Lyapunov plus
boundedness of the solutions for every initial condition.
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Proof. It is straightforward to see that the (shifted)
candidate Lyapunov function

V (x, ξ) = H(x) +
1

2
(ξ − ξ⋆)⊤KI(ξ − ξ⋆)

is indeed a Lyapunov function:

V̇ = Ḣ + ξ̇⊤KI(ξ − ξ⋆)

= ỹ⊤

1 ũ1 − ỹ⊤

2 ũ2 − ỹ⊤

1 KI(ξ − ξ⋆)

= ỹ⊤

1 ũ1 − ỹ⊤

2 ũ2 − ỹ⊤

1 (ũ1 + KPỹ1)

=−ỹ⊤

2 ũ2 − ỹ⊤

1 KIỹ1 ≤ 0 .

The second equation is due to (10) and (11a), while the
third is due to (11b) and the definition of ξ⋆. Non positivity
is due to the monotonicity of the resistors and the positive
definiteness of KI. It follows then from standard Lyapunov
theory that (x⋆, ξ⋆) is stable. Since V is also radially
unbounded (see Remark 3) the solutions remain bounded
for any initial condition (Khalil, 1996, p. 124). From
LaSalle’s invariance principle (Salle and Lefschetz, 1961,
p. 66) we conclude that y1(t) converges to y⋆

1 and that the
detectability condition (12) leads to asymptotic stability.

3.1 Example (cont.)

The derivatives of the inductor’s and capacitors’ charac-
teristics are, respectively,

Isφ

δφ

sech2

(

φ

δφ

)

,
1

C1

and
1

C2

.

Those of the resistive elements are

R,
Is1

VT

exp

(

vvc1

VT

)

and G .

Assumption 3 is verified, since strict positivity of the
derivatives implies strict monotonicity.

In order to obtain the equilibrium input-output pairs, it is
necessary to solve (9):

y⋆
2 =





i⋆ic
v⋆
vc1

v⋆
vc2



 =

[

y⋆
1

VT ln (y⋆
1/Is1 + 1)

y⋆
1/G

]

x⋆ =

[

φ⋆

q⋆
1

q⋆
2

]

=





δφ artanh
(

y⋆
1/Isφ

)

y⋆
1C1/G

y⋆
2C2/G





u⋆
1 = vvs = v⋆

vc1
+ y⋆

1

(

1

G
+ R

)

Suppose that the system parameters are

Isφ
= 30mA, δφ = 250µWb, C1 = C2 = 2µF

and

R = 100Ω, Is1 = 0.1µA, G = 1mA/V .

Suppose further that we want to stabilize the diode’s
current at y⋆

1 = 10mA. For an initial condition

x(0) =

[

1mWb
1µC

0.5µC

]

,

the PI controller (11), with KI = 500V/mA · s and KP =
100Ω, produces the set of currents and voltages shown in
Figure 4. It can be seen that both, y1 and u1 converge to
their preset values of 10 mA and 11.3 V respectively.
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iφ
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Fig. 4. Simulated response of the regulated circuit.

4. CONCLUSIONS

We have identified in this paper a large class of nonlin-
ear RLC circuits that can be (globally) stabilized with
simple PI controllers. Instrumental for our proof was the
establishment of the property of relative passivity, which
is satisfied by RLC circuits with monotonic characteristic
functions. It has been shown that the incorporation of
the integral action robustifies the controller, obviating the
need for the exact knowledge of the circuit parameters.
This well-known property of PI controllers —that under-
lies its huge popularity in applications— is particularly
critical here, where the implementation of the control law
without the integral action requires the computation of
the constant input associated to desired equilibria. Cur-
rent research is under way to explore the use of relative
passivity to induce oscillations on the circuit, a behavior
that is desired in many practical problems.
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