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1. INTRODUCTION

1.1 Motivation

Large-scale systems may require the use of decen-
tralized control design when one, or several of the
following difficulties occur:

(1) The system is widely distributed in space, so
information transfer is too costly (e.g. power
systems),

(2) implementation of a centralized feedback law
is hard or impossible due to the system’s
decentralized structure (e.g. aerial and ter-
restrial traffic control),

(3) the complexity of analysis and design result-
ing from the system’s order can be reduced
by splitting the system into several subsys-
tems (e.g. large flexible structures),

(4) the design criteria is robustness in the pres-
ence of structural perturbations where sub-
systems are disconnected and again con-
nected during operation.

In general terms, the problem of decentralized
control is that of finding a set of controllers sat-
isfying an information constraint: the informa-
tion available at each control station is only a
subset of the state variables. The controllers are
to be designed for stabilizing the set of inter-
connected subsystems that comprise the overall
system. Clearly, such a decentralized feedback
scheme would address difficulties 1 and 2.

As in the centralized case, several strategies have
been proposed in order to solve the problem.
For instance, eigenvalue assignment, or optimal
control. The main disadvantage of these methods
is that, at some stage of the design procedure, a
solution to a set of simultaneous equations of at
least the same order of the system needs to be
found. Thus, difficulty 3 is left unsolved.

An alternative strategy is to consider each system
independently and treat the interconnections as
perturbations. This approach seeks to eliminate,
or at least attenuate the perturbations using avail-



able robust techniques (Richter et al., 1982; Akar
and Özgüner, 2002; Yan et al., 2004). A scheme
like this one has the advantage of resolving diffi-
culties 3 and 4. This is the approach taken in this
paper.

Sliding mode control is a powerful and robust
technique that fits well into this framework. The
sliding mode controller drives the system’s state
into a “custom built” sliding (switching) surface
and constraints the state thereafter. A system
motion in a sliding surface, named sliding mode,
is robust with respect to uncertainties an dis-
turbances matched by a control but sensitive to
unmatched ones. This control design strategy, al-
though robust, has two main disadvantages:

• The classical sliding mode controllers are
robust in the case of matched disturbances
only.

• The trajectory of the designed solution is not
robust even with respect to the matched dis-
turbances during the time interval preceding
the sliding motion (the reaching phase).

In order to address the unmatched disturbance
issue, and to further improve the robustness prop-
erties of the system under control, the combina-
tion of sliding modes with other robust techniques
has been investigated (Poznyak et al., 2003; Choi,
2003; Cao and Xu, 2004).

Integral sliding mode control (Utkin and Shi,
1996) is a variation to conventional sliding mode
with additional benefits such as elimination of the
reaching phase and chattering reduction.

1.2 Main Contribution

An integral sliding surface using H∞ control
is proposed in order to solve the decentralized
control problem, where the interactions among
subsystems are viewed as perturbations and the
matching assumption turns out to be too restric-
tive.

It is shown that by a proper selection of the sliding
surface parameter, the effect of the unmatched
perturbation, due to the discontinuous control,
will be minimum; and that, at this minimum,
the unmatched perturbation will not be ampli-
fied. This results are general and can be applied
whenever an integral sliding mode surface is to
be designed, whether in combination with H∞ or
other techniques.

2. PROBLEM STATEMENT

Consider a linear time invariant decentralized
system with N control stations

ẋi(t) = Aixi(t) + Biui(xi, t) +
N∑

j=1

Aijxj(t)

i = 1, 2, . . . , N (1)

where xi(t) ∈ R
ni is the state vector and

ui(xi, t) ∈ R
mi is the control action of the ith

station at time t ∈ R. Note that ui satisfies an
information constraint, it depends on xi only. Ai

and Bi are matrices of appropriate dimensions.
∑N

j=1 Aijxj represents the influence of the other
stations, where the Aij ’s are, again, matrices of
appropriate dimensions. In what follows, when-
ever the subscript i appears, it is assumed that
the properties stated hold for all i = 1, 2, . . . , N .

Assumption 1. The pairs {Ai, Bi} are stabiliz-
able.

Assumption 2. The matrices Bi have full rank mi.

Assumption 3. The initial state x(t0) is bounded
by a known constant q, ‖x(t0)‖ ≤ q.

The objective is to design each of the control laws
ui so that system (1) is semi–globally asymptoti-
cally stable.

2.1 Notation

The notation is fairly standard. I is the iden-
tity matrix of the corresponding dimension. BT

denotes the transpose of B. B⊥ is a matrix
whose columns span the orthogonal complement
of span(B), i.e., BT B⊥ = 0. B+ is the pseudo–
inverse of B, that is, B+ = (BT B)−1BT .

3. INTEGRAL SLIDING MODE CONTROL
(ISMC)

From now on, consider the perturbed linear sys-
tem

ẋ(t) = Ax(t) + Bu(x, t) + φ, (2)

where the pair {A,B} is controllable, matrix B
has full rank and φ is a perturbation.

3.1 Design Principles

Conventional sliding mode control (SMC) is an
effective technique with the ability to withstand
disturbances of the matched type. The main idea
is to use a discontinuous control action in order
to force the system’s state into a desired surface,
regardless of the matched uncertainties.

Besides the robustness property just mentioned,
conventional sliding mode control has another ad-
vantage: the dynamic equations are of lower order



than the original system. This is due to the fact
that the sliding surface, being embedded in the
state space, is of lower dimension. In contrast, the
motion equations resulting from an ISM controller
are of the same order as the original system.
This is a sacrifice made for the sake of robustness
starting from the initial instant.

ISMC proposes a control law of the form

u(x, t) = u0(x, t) + u1(x, t) ∈ R
m,

where u1 is a discontinuous action designed to
reject the matched disturbance by making the
switching surface attractive, and u0 is responsible
for stabilizing the system in the presence of the
unmatched perturbation.

The switching surface is chosen as

s(x, t) = G [x(t) − x(t0)] −

− G

[∫ t

t0

(Ax(τ) + Bu0(x, τ) dτ

]

= 0

where G is an m×n matrix and GB is invertible.
The integral term on the right hand side comes
out as a dynamic equation of the same dimension
as the state. A possible interpretation of s is as
a penalizing factor of the difference between the
desired trajectory

∫ t

t0

[Ax(τ) + Bu0(x, τ)] dτ + x(t0),

and the actual one, projected along G.

3.2 Design of the Discontinuous Component

The discontinuous control is defined as

u1(x, t) = −ρ(x)
(GB)T s(x, t)

‖(GB)T s(x, t)‖
, (3)

where ρ(x) is a positive scalar function.

This control law guaranties the attractiveness of
the sliding surface, that is, it makes the point
s(x, t) = 0 stable. As a matter of fact, if the initial
conditions are accurately known, s = 0 is guar-
antied right from the initial time t0 (the reaching
phase is eliminated), which in turn ensures the
robustness property for all t ≥ t0.

A possible choice of ρ(x) is

ρ(x) > ‖(GB)−1G‖φ (4)

By taking Vs(s) = ‖s‖2/2 as a Lyapunov function
the stability of s is verified:

V̇ = sT ṡ, (5)

the derivative of s along time is

ṡ = G [Ax + B(u0 + u1) + φ − Ax − Bu0]

=−ρGB
(GB)T s

‖(GB)T s‖
+ Gφ (6)

Combining (5) and (6), one has

V̇s =−ρ‖(GB)T s‖ + sT Gφ

≤−‖(GB)T s‖
[
ρ − ‖(GB)−1G‖φ

]

≤ 0

To determine the motion equations, the equivalent
control method is used,

ṡ = G [Bu1 + φ] .

The perturbations can be represented as vectors
consisting of two components, one that belongs to
the space spanned by B, and another that belongs
to the space orthogonal to B

φ = BB+φ + B⊥B⊥+φ
︸ ︷︷ ︸

η

.

So ṡ becomes

ṡ = GB
[
u1 + B+φ + η

]
.

Solving the equation for the equivalent control
u1eq yields

u1eq = −B+φ − (GB)−1Gη.

The new system’s equation is obtained by sub-
stituting the equivalent control in the original
equation

ẋ = Ax + Bu0 +
[
I − B(GB)−1G

]
η.

Note that the matched uncertainty has been elim-
inated and there is an extra degree of freedom: the
choice of u0 to ensure the stability of the system.

Although the matched uncertainty has been an-
nihilated, there is a gain for the unmatched one.
Essentially, the perturbation

φ = BB+φ + η,

has been transformed into

Γη, Γ , [I − B(GB)−1G].

Proposition 1. For any B ∈ R
n×m, rank(B) = m,

and any vector η ∈ R
n, the norm

∥
∥
[
I − B(GB)−1G

]
η
∥
∥

attains it’s minimum at G = BT .

Proof: Consider first the problem of finding
the vector η0 ∈ span(B) which is closest to an
arbitrary vector η, i.e., which minimises ‖η −
η0‖. According to the projection theorem, η0

is a unique minimising vector when η − η0 is
orthogonal to span(B).

To solve the later problem, set η0 = Bβ. This
ensures that η0 ∈ span(B). Then, search for

the vector β̂ which makes η − Bβ orthogonal to
span(B), that is,



0 = BT η − BT Bβ̂

β̂ = (BT B)−1BT η

= B+η

Realizing that
∥
∥
[
I − B(BT B)−1BT

]
η
∥
∥

is minimum, it only remains to set G = BT to
complete the proof. It is important to notice that
at G = B+, the minimum is also attained. �

Proposition 2. The unmatched perturbation η is
not amplified, i.e. for m < n the following identity
holds:

‖ΓB‖ = ‖I − BB+‖ = 1

Proof: Notice first that

ΓT
BΓB =

[
I − BB+

] [
I − BB+

]

= I − BB+ = ΓB ,

which means that ΓB is a symmetric matrix and
therefore all the eigen-values are real. Suppose
that v is an eigen-vector associated to any eigen-
value λ of ΓB , that is,

ΓBv = λv

⇒

vT ΓT
BΓBv = λ2‖v‖2. (7)

But, since ΓT
BΓB = ΓB we have

vT ΓT
BΓBv = vT ΓBv = λ‖v‖2. (8)

From (7) and (8), it is clear that the eigen-values
of ΓB must satisfy

λ2 = λ.

The last equation has two solutions, λ = 0 and
λ = 1.

Since rank(BB+) < n, the rank of I − BB+

cannot be zero. This means that ΓB must have
at least one eigen-value different from zero, that
is, the maximum eigen-value is one. The last
statement implies that ‖ΓB‖ = 1. �

So, the gain ΓB poses no problem. Furthermore,
since by definition of B⊥,

BT B⊥ = 0
[
I − B(BT B)−1BT

]
B⊥B⊥+φ = B⊥B⊥+φ = η

which means that the unmatched perturbation is
left unchanged. Proposition 1 and 2 imply that
it is not possible to attenuate the unmatched
disturbance by the control component u1; and
to avoid amplification, only the projection of the
difference between the actual and the desired
trajectories along B should be penalized.
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Fig. 1. General Block Diagram of a Control Sys-
tem.

Finally, the dynamics at the sliding surface are
given by

ẋ = Ax + Bu0 + η. (9)

3.3 Design of the Continuous Component

There are several options to treat the unmatched
term. The criteria for selecting a method is still
robustness. In this paper the unmatched term is
dealt with H∞ control.

A general block diagram of a control system is
depicted in figure 1. G is called the generalized
plant and K is the controller. The output z is
a penalty variable which may contain an error
signal; y is composed of the available measurement
variables; u0 is the control input and w contains
all external inputs, including disturbances, sensor
noise and commands. The resulting closed–loop
transfer matrix from w to z is denoted by Tzw.

The following is taken for granted:

Assumption 4. The generalized plant has the
form

ẋ = Ax + B1w + B2u0

z = C1x + D12u

y = x.

Assumption 5. (A,B2) is stabilizable and (C1, A)
is detectable.

Assumption 6. DT
12

[
C1 D12

]
=

[
0 I

]
.

Theorem 1. (Doyle et al., 1989)
‖Tzw‖∞ < γ iff there is a positive semi–definite
matrix X∞ such that

AT X∞+X∞A−X∞(B2B
T
2 −γ−2B1B

T
1 )X∞+

+ CT
1 C1 = 0. (10)

Moreover, when this conditions hold, one such
controller is

u0 = −BT X∞x.

Theorem 2. (Isidori and Astolfi, 1992)
If assumptions 4, 5, 6 are satisfied, and there is a
solution to the Riccati equation (10) then

∫ T

0

zT (s)z(s) ds ≤ γ2

∫ T

0

wT (s)w(s) ds,



for all T > 0. Moreover, the function

V (x) = xT X∞x

satisfies

V̇ ≤ −‖C1x‖
2 − ‖u‖2 + γ2‖w‖2.

The equivalent dynamics (9) can be written using
H∞ notation as

ẋ = Ax + B⊥B⊥+

︸ ︷︷ ︸

B1

φ
︸︷︷︸

w

+ B
︸︷︷︸

B2

u0.

So the task is to find the smallest γ for which there
is a positive semi–definite matrix X∞ satisfying

AT X∞+X∞A−X∞(BBT −γ−2B⊥B⊥+)X∞+

+ CT
1 C1 = 0.

And the integral sliding surface becomes

s(x, t) = BT [x(t) − x(t0)] −

− BT

[∫ t

t0

(A − BT X∞)x(τ) dτ

]

.

4. APPLICATION TO DECENTRALIZED
CONTROL

Consider again system (1). It can be thought as a
set of perturbed systems

ẋi(t) = Aixi(t) + Biui(xi, t) + φi(x), (11)

x = col(x1, . . . , xN ) and the nominal systems are

ẋi(t) = Aixi(t) + Biui(xi, t). (12)

The perturbations φi, resulting from the intercon-
nections, are thus defined as

φi(x) =

N∑

j=1

Aijxj(t) = Aix. (13)

where Ai =
∑N

j=1 Aij .

The problem can be restated as follows: design
N control laws for the nominal systems (12), so
that perturbations (13) do not affect the stability
of system (1).

With the analysis developed so far, it it easy
to derive sufficient conditions for stability of the
interconnected system (1).

A set of controls

ui = ui0 + ui1,

where the discontinuous components are given
by (3) is proposed.

According to (9), each subsystem at the sliding
surface is described by

ẋi = Aixi + B⊥

i B⊥+
i Ai

︸ ︷︷ ︸

Bi1

x
︸︷︷︸

wi

+ Bi
︸︷︷︸

Bi2

ui0.

Setting Ci1 = I and solving the Riccati equations
for each γi ensures that the derivative along time
of Vi(xi) = xT

i Xi∞xi is

V̇i ≤ −‖xi‖
2 − ‖ui0‖

2 + γ2
i ‖x‖

2

A straight forward approach to determine stabil-
ity of an interconnected system, is to consider a
composite Lyapunov function as the sum of the
individual Lyapunov functions (Yan et al., 2004)

V =
N∑

i=1

Vi(xi)

V̇ ≤−

N∑

i=1

[
‖xi‖

2 + ‖ui0‖
2 − γ2

i ‖x‖
2
]

= −‖x‖2(1 − ‖γ‖2) − ‖u0‖
2,

where

γ = col(γ1, . . . , γN ), u0 = col(u01, . . . , u0N ).

If ‖γ‖ < 1, then it is possible to design an
asymptotically stable system.

In order to determine the gains for the discon-
tinuous controls ui1 (3), a bound on φi = Aix is
needed. Notice that

λmin(X∞)‖x(t)‖2 ≤ xT (t)X∞x(t) ≤

xT (t0)X∞x(t0) ≤ λmax(X∞)‖x(t0)‖
2, (14)

which means that

||x(t)|| ≤

√

λmax(X∞)

λmin(X∞)
||x(t0)|| = p||x(t0)|| ≤ p×q

and the gain can be set as

ρi > ‖Ai‖p × q.

Naturally, we need to consider only the cases when
X∞ is strictly positive definite.

Since for any initial condition x(t0), a ρi can be
found, and therefore a set of controllers stabilizing
system (1), the semi-global stability of the closed-
loop system can be concluded.

5. NUMERICAL EXAMPLE

To illustrate the algorithm developed we provide
a simple example for a system to be controlled by
two control stations.

Consider two identical systems of order two, with

A1 = A2 =

[
0 1
−2 −4

]

, B1 = B2 =

[
0
1

]

,

A1,2 = A2,1 =

[
0.2 0.2
2 2

]

Suppose a bound ‖x(t0)‖ ≤ 5 is known.
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Fig. 2. Response of the nominal system ẋ1 =
A1x1 + B1u1.
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Fig. 3. Response of the interconnected system
ẋ1 = A1x1 + B1u1 + A1,2x2.

The unmatched perturbation is

ηi = B⊥

i B⊥+
i Ai,jxj =

[
0.2 0.2
0 0

]

xj , j 6= i.

γi = 0.7 is an approximate optimum for the H∞

problem, where

Xi∞ =

[
1.791 0.350
0.350 0.210

]

.

The condition ‖γ‖ = ‖
[
0.7 0.7

]
‖ < 1 is satisfied,

so a solution to the problem exists. The continu-
ous component is set as

u0i = −BT
i Xixi =

[
−0.350 −0.210

]
xi.

Calculation of the gains ρi yields

ρi > ‖Ai,j‖piq = 2.84

√

λmax(Xi∞)

λmin(Xi∞)
5 = 52.74

So, ui =
[
−0.350 −0.210

]
xi − 55 sign(si). The

simulation of the system’s response is showed in
figures 2 and 3.

6. CONCLUSIONS

In this paper ISM and H∞ control techniques
were combined. A discontinuous action was used
to eliminate the unmatched component of the

perturbation. The selected surface ensures that
the effect of the unmatched term, due to the
discontinuous control is minimal ; and that when
the minimal is achieved, there is no amplification
of such term. The effect of the unmatched term
was then reduced using H∞ control. This results
are general and can be applied outside the context
of decentralized control.

The techniques developed in this paper can be
used to derive simple sufficient conditions for the
stability of decentralized control systems. Such
conditions have H∞ flavor, as they are stated in
terms of Riccati equations.
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Akar, M. and Ü. Özgüner (2002). Decentralized
sliding mode control design using overlapping
decompositions. Automatica 28, 1713–1718.

Cao, W. and J. Xu (2004). Nonlinear integral-
type sliding surface for both matched and
unmatched uncertain systems. IEEE Trans.
Automat. Contr. 49, 1355–1360.

Choi, H. (2003). An LMI-based switching surface
design method for a class of mismatched
uncertain systems. IEEE Trans. Automat.
Contr. 48, 1634–1638.

Doyle, J. C., P. P. Khargonekar and B. A. Fran-
cis (1989). State-space solutions to H2 and
H∞ control problems. IEEE Trans. Automat.
Contr. 34, 831–847.

Isidori, A. and A. Astolfi (1992). Disturbance at-
tenuation and H∞-control via measurement
feedback in nonlinear systems. IEEE Trans.
Automat. Contr. 37, 1283–1293.

Poznyak, A., Y. B. Shtessel and C. Jiménez
(2003). Mini-max sliding mode control for
multimodel linear time varing systems. IEEE
Trans. Automat. Contr. 48, 2141–2150.

Richter, S., S. Lefebvre and R. A. DeCarlo (1982).
Control of a class of nonlinear systems by
decentralized control. IEEE Trans. Automat.
Contr. 27, 492–494.

Utkin, V. and J. Shi (1996). Integral sliding mode
in systems operating under uncertainty con-
ditions. In: Proc. Conference on Decision and
Control. Kobe, Japan. pp. 4591–4596.

Yan, X., C. Edwards and S. K. Suprgeon (2004).
Decentralised robust sliding mode control for
a class of nonlinear interconnected systems by
static output feedback. Automatica 40, 613–
620.


