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Abstract— A Backstepping controller based on SE(3) for
achieving multi-agents consensus and flight formation of a
drones fleet is developed in this paper. The controller is obtained
using the nonlinear model of the quadrotor and derived with
virtual inputs to converge the fleet to desired references. The
stability analysis of the controller is analyzed and proved with
the Lyapunov theory. Emulations of the control algorithm are
carried out for validating the well performance of the closed-
loop system.

I. INTRODUCTION

The UAVs (Unmanned Aerial Vehicles) are becoming
popular because their ability to perform a variety of missions
such as monitoring of civil and military areas, also monitor-
ing different kind of natural disasters or the inspection of
any dangerous environments, in the agriculture the UAVs
are used to inspect the irrigation areas.

Quadrotors are special class among different types of
rotorcrafts. Quadrotor vehicles have gained a lot of research
interest due to the clear advantages posed by their vertical
take-off and landing, hovering capability and slow precise
movements. The vehicle consists of four rotors in total, with
two pairs of counter-rotating, fixed-pitch blades located at the
four corners of the aircraft. The quadrotor control is involved
in stabilize attitude (roll, pitch and yaw) and position (x, y,
z) either separately or in a coupled way. Due to the unique
body structure of a rotorcraft, as well as the rotor dynamics,
the rotorcraft attitude dynamics and position dynamics are
strongly coupled. Therefore, it is very difficult to design a
decoupled control law of good structure that stabilizes the
faster and slower dynamics simultaneously [15].

The dynamic model of a quadrotor includes under actu-
ation, strong coupling multi-input and multi-output design,
and unknown nonlinearities. In the quadrotor the movement
is caused by the resultant forces and moments of four
independent rotors. The quadrotor dynamics involve four
input forces, six output coordinators and have highly coupled
and unstable nonlinear and time varying dynamics, even
though many aerodynamic effects are simplified or neglected,
hence, the control and the mathematical model to achieve a
good performance and autonomous flight is a difficult task.

Different applications for this kind of vehicles could be
performed only with only one of them nevertheless multiple
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Compiègne, CNRS, Heudiasyc UMR 7253, 60 203 Compiègne Cedex,
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vehicles will be more flexible and efficient in performing
the tasks. However, using multiple vehicles involve other
problems such as the communication and computational
power.

The development of powerful control techniques for single
vehicles, the explosion in computation and communication
capabilities and the advent of miniaturization technologies
have elevated interest in vehicles which can interact au-
tonomously with the environment and other vehicles to
perform, in the presence of uncertainties and adversities, task
beyond the ability of individual vehicles [7].

The cooperative control of UAVs can be defined as a group
of drones, that could be of the same dynamics or different,
sharing the same objectives to ensure the mission execution
successfully. This group of drones can perform the mission
keeping a relative distance or specific positions.

Cooperative control and multi-agent robotics are active
research areas both in control theory and robotics. Problems
such as flocking, consensus, coverage and pattern formation
are some of the important problems that have been studied
over the past few years.

In general there are four methods to achieve the coop-
erative control, the behavioral approach is to set different
behaviors for each agent in the group while the control of
each agent is the weighted average of the control of each
behavior. Systems using this technique are able to navigate to
way points, avoid obstacles and to keep a desired formation,
all at the same time [9].

The main idea of using the graph theory is to use the
matrices related to the graph which leads the problem into
a linear system analysis with a matrix known as Laplacian
that contains all the interactions between agents, hence the
problem is reduced to analyzing the eigenvalues of the
Laplacian to demonstrate the stability of the formation [1].

The other approach is the virtual structure, in which the
main problem is to design the desired dynamics of a virtual
structure (in this particular case could be the formation
requested) and then just design a control law enough robust
to track the desired structure and keep the formation [12],
the problem with this methodology is the computation cost
of generating the virtual structure.

And the last approach is the leader-follower in which there
is an agent that is the leader and the rest of the fleet are
the followers, in this approach the leader do not care about
the information of the other agents, the problem with this
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methodology is not robust against any fault of the leader, to
avid this problem, many ideas has been proposed such as the
virtual leader which is a virtual particle with the dynamics
of the other agents and all the fleet becomes a follower. The
advantage of the leader-follower approach is that is relatively
easy to implement.

The outline of the paper is the following: the problem
statement is described in section II. The mathematical equa-
tions of the quadrotor and the attitude control algorithm is
introduced in section III. The multi-agent system with its
control algorithm for achieving flight formation is explained
in section IV. Numerical simulations are realized for val-
idating the performance of the drones fleet, some graphs
depicting these results are presented in section V. Finally
in section VI the conclusions about this work are discussed.

II. PROBLEM STATEMENT

Formation control of autonomous vehicles is a real chal-
lenge addressed in the context of multi-agent systems. In this
work, our interest is to give an easy solution for solving the
control problem of n quadrotor. In this study, the agents are
physically decoupled, but they are interacting between them
and exchanging information via wireless communication
links.

The main idea of the consensus algorithms is to im-
pose similar (mostly) dynamics behavior to each agent. In
this work, the information exchange or interaction between
agents is considered piece-wise continuous, so that the
evolution can be modeled with differential equations. In
addition, fixed and switching topologies are studied with
the characteristic that all of them belong to the type of
strongly connected graphs. Likewise, the graphs considered
are directed.

Therefore, it will be considered that the agents fleet has
achieved the consensus if for any initial conditions xi(0) the
next condition fills

lim
t→∞
||xi(t)− xi(t)|| → 0 (1)

and for formation there exists an offset for each agent and
mathematically can be expressed as

lim
t→∞
||xi(t)− xi(t)|| → ∆i j (2)

where xi and x j define the states information of the agent
i and j respectively and ∆i j represents the relative distance
between these both agents, for all i, j : 1, ...,n.

The goal of this work is to propose a nonlinear controller
that includes the protocol consensus of first order to achieve
flight formation and switching topology in aerial vehicle with
second order dynamics.

III. QUADROTOR DYNAMICS AND ATTITUDE
STABILIZATION

The following nonlinear dynamic model of the quadrotor
expressed from Newton-Euler approach is considered

ẍ =−sinθ
1
m

U1

ÿ = cosθ sinφ
1
m

U1

z̈ = cosθ cosφ
1
m

U1−g

φ̈ = θ̇ φ̇
Iy− Iz

Ix
− Ir

Ix
θ̇Ω+

l
Ix

U2

θ̈ = φ̇ ψ̇
Iz− Ix

Iy
− Ir

Iy
φ̇Ω+

l
Iy

U3

ψ̈ = θ̇ ψ̇
Ix− Iy

Iz
+

l
Iz

U4

(3)

where (x,y,z) denote the relative distance between the center
of mass of the quadrotor and the inertial frame, φ ,θ ,ψ
represent the Euler angles used to express the attitude of
the vehicle, Ix, Iy, Iz are the inertia along the respective axis,
the assumption that the quadrotor is geometrically symmetric
is done, the gravity is represented by g and the mass of the
vehicle is given by m. This vehicle is a under-actuated system
that has more degree of freedoms than control inputs, in this
case, four control inputs are used, U1, ...,U4, from which U1
is used for the altitude control while the other three are for
the attitude stabilization and horizontal displacements.

For control purposes, the aerial vehicle model has to be
described in states variables, defining the state vector as X=
[x1,x2,y1,y2,z1,z2,φ1,φ2,θ1,θ2,ψ1,ψ2] such that

ẋ1
ẋ2
ẏ1
ẏ2
ż1
ż2
φ̇1
φ̇2
θ̇1
θ̇2
ψ̇1
ψ̇2



=



x2
−sinθ1

1
mU1
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cosθ1 sinφ1

1
mU1

z2
cosθ1 cosφ1

1
mU1−g

φ2

θ2φ2
Iy−Iz
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− Ir

Ix
θ2Ω+ l

Ix
U2

θ2

φ2ψ2
Iz−Ix

Iy
− Ir

Iy
φ2Ω+ l

Iy
U3

ψ2

θ2ψ2
Ix−Iy

Iz
+ l

Iz
U4



(4)

Attitude stabilization

The attitude control of the quadrotor is obtained via the
Backstepping approach. System (4) can be studied in many
subsystems with second order dynamics with the next form

η̇1 = η̇2

η̇2 = g(ω,γ)+h(ω,γ)u
(5)

where g(ω,γ), h(ω,γ) are known nonlinear functions and u
denotes the control input.
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For tracking purposes, it is necessary to stabilize the state
in a desired value ηd . Then, the following tracking error can
be proposed as ē1 = ηd

1 −η1, thus, ˙̄e1 = η̇d
1 −η2.

Define a positive function and its time derivative as

V (ē1) =
1
2

ē2
1 (6)

V̇ (ē1) = ē1(η̇
d
1 −η2) (7)

the state η2 is defined as a virtual control input such
that η2 → ηd

1 = η̇d
1 + α1ē1, where α1 > 0 is a constant.

Introducing the previous into (7) it can be assured that at
least the state η1 is stable.

Define the velocity error as ē2 = η2−ηv
2 and propose the

following candidate Lyapunov function as

V2(ē1, ē2) =V1(ē1)+
1
2

ē2
2. (8)

Then,

V̇ (ē1, ē2) =ē1(−α1ē1− ē2)+ ē2
(
g(ω,γ)+

h(ω,γ)u+α1(ē2 +α1ē1)
) (9)

Hence, the controller yields

u =
1

h(ω,γ)

[
−α1(ē2 +α1ē1)−g(ω,γ)+ ē1−α2ē2

]
(10)

where αi is a positive constant. Note that it is necessary
to ensure that h(ω,γ) 6= 0 to avoid indetermination of the
control law. In closed loop the derivate of the Lyapunov
function becomes

V̇2 =−α1ē2
1−α2ē2

2 ≤ 0 (11)

This impies that the subsystem (5) with the controller (10)
has an asymptotically stable behavior.

The consensus algorithm for the drones fleet is considered
in the (x,y) plane with a constant altitude zd , therefore the
altitude controller can be obtained using (10), thus it becomes

U1 =
1

cosθ1 cosφ1

[
g−α7(e8 +α4e7)+ e7−α8e8

]
(12)

with e7 = z1d − z1 and e8 = z2− zv
2.

Similarly, applying (10) for the attitude dynamics of the
quadrotor, the following controllers are obtained

U2 =
Ix

l

[
−α1(e2 +α1e1)−θ2φ2

(
Iy− Iz

Ix

)
+

Ir

Ix
θ2Ω+

e1−α2e2

]
U3 =

Iy

l

[
−α3(e4 +α3e3)−φ2ψ2

(
Iz− Ix

Iy

)
+

Ir

Iy
φ2Ω+

e3−α4e4

]
U4 =

Iz

l

[
−α5(e6 +α5e5)−θ2ψ2

(
Ix− Iy

Iz

)
+ e5−α6e6

]
(13)

with e1 = φ1d −φ1 and e2 = φ2−φ v
2 , e3 = θ1d −θ1 and e4 =

θ2−θ v
2 , e5 = ψ1d −ψ1 and e6 = ψ2−ψv

2 .

From the quadrotor flight properties observe that the
movements in the plane (x,y) can be achieved using the
control inputs U2 and U3. This signifies that the position
control in this plane can be achieved using the desired angles
θd and φd for x and y coordinates respectively. Therefore
from (4) the horizontal plane subsystem can be written as

ẋ1
ẋ2
ẏ1
ẏ2

=


x2

−(sinθ) 1
mU1

y2
(cosθ sinφ

1
mU1

 (14)

Define Ux =−sinθ and Uy = cosθ sinφ , thus, the reference
angles for the attitude controller could be obtained as

θ
d
1 = arcsin(−Ux) (15)

φ
d
1 = arcsin

( Uy

cos(θ d
1 )

)
(16)

Notice that the function arcsin(·) ∈ (−1,1) this makes a
restriction in the attitude control cause small movements
have to be considered. Ux and Uy will be obtained from the
consensus algorithms.

IV. MULTI-AGENT SYSTEMS AND CONSENSUS
ALGORITHM

The communication in multi-agent system uses oftenly the
Graphes theory, which defines a representation showing how
the communication flows between nodes (in our case agents).
A graph is a set of ordered pairs (Vn,εn) where Vn : 1,n
are the agents and εn ⊆ Vn ×Vn defines the edges or the
communication interaction. In our work, directional graphs
are considered, this means that the graph (p,q) denotes that
the agent q can obtain information from vehicle p but not
vice versa. Notice that, directed graph is a general case of
the indirected graphs. Usually the edge is considered to other
agent, the self-loop edge is not allowed, at least in this paper.

There are matrices, associated with graphs, for describing
mathematically the interaction between agents, these matri-
ces are the Laplacian, Degree and Adjacency matrix. The
Degree matrix is diagonal in which its entries are the degree
of the node, this is the number of agents that are sending
information to the agent. Its mathematical representation is
D = diag(d1, ...,dN). The adjacency matrix A = [ai j] ∈RN×N

is associated to the graph and is defined as

ai j =

{
aii = 0
ai j > 0 if(v j,vi) ∈Vi×Vj

Finally, the Laplacian matrix is defined as

L = D−A

A directed path from the node Vi1 to the Vil is a defined se-
quence of interactions of the way (Vik,Vi(k+1))...(Vi(l−1),Vil).
A graph is strongly connected if there is at least one direct
path from any node to other one in the graph. The previous
is one of the conditions to achieve the convergence of the
fleet.
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A. First Order dynamics

For the consensus algorithm a first order dynamics is used
for the analysis, this does not means that the system (in our
case the quadrotor) has this dynamic. The dynamic of the
information of states is given by

Ẋi = ui, i = 1, ...,n (17)

where X ∈ Rm is the information state and ui ∈ R is the in-
formation control of the i-th agent. The consensus algorithm
can be achieved with

ui =−
n

∑
j=1

(
ai j(t)(Xi−X j)

)
i = 1, ...,n (18)

where ai j is the (i, j) entry of the adjacency matrix, the
controller in matrix representation is

Ẋ =−[L(t)⊗ Im]X (19)

where X =
[
X1 . . . Xn

]T are the information states, in this
case we are interested to achieve the consensus in the xy
plane, then, Xi = (xi,yi) and it defines the positions of the
i-th agent, therefore, the problem becomes a Linear Time
Invariant analysis.

Then (18) can be modified adding a relative distance and
a speed terms and also introducing the leader information,
hence

ui =− tanh
( n

∑
j=1

(Xi−X j)−∆i j

)
(20)

uleader =− tanh
[( n

∑
j=1

(Xi−X j)−∆i j

)
− (Xd−Xleader)

]
(21)

Function tanh(·) is used as saturation to produce small
movements as desired for obtaining θd and φd . This protocol
algorithm can be seen as a proportional controller in which
the position error is computed with the positions of all agents
in the fleet.

B. Backstepping consensus algorithm

The system (14) will be used for consensus and flight
formation, notice that for achieving these ones with the
dynamics information of first order is complicate, cause the
agents could have oscillations when arriving to the reference
even if it is very smooth. Similar results are obtained when
using a feedback to transform the second order system into
a first order, as suggested by some authors.

For agent’s position control and consensus and formation
between them, the Backstepping approach is used with some
modifications. This methodology allows us to manipulate
each state and by consequence the convergence analysis of
the fleet. Some ideas from [1] and [3] are taken for the
stability analysis.

Rewriting (14)

ẋ1i = ẋ2i (22)

ẋ2i =Uxi
1
mi

U1i (23)

ẏ1i = ẏ2i (24)

ẏ2i =Uyi
1
mi

U1i (25)

where the sub-index i denotes the number of the agent. It is
assumed homogeneity in the agents.

Define the tracking error between agents as

ê1i =−∑ai j(x1i − x1 j) ∀ j : 1, ...,n (26)

Note that the ê1i can be represented as

ê1i =−
(
∑ai j

)
x1i +∑ai j x1 j ∀ j : 1, ...,n (27)

then
˙̂e1i =−

[
∑ai j

]
x2i +∑ai j ẋ1 j (28)

A positive function is proposed and its time derivative as

V (ê1i) =
1
2

ê1i ; V̇ (ê1i) = ê1i
˙̂e1i (29)

by substituting (28) into (29)

V̇ (ê1i) = ê1i

[
−
[
∑ai j

]
x2i +∑ai j ẋ1 j

]
(30)

Define xv
2i

as

xv
2i
=

1
∑ai j

[
∑ai j ẋ1 j + ᾱ1ê1i

]
ᾱ1 > 0 (31)

It is clear to note that if x2i → xv
2i

, then

V̇ (ê1i) =−ᾱ1ê2
1i

(32)

and if ê1i = 0 then V̇ (ê1i) = 0 implying that the consensus
has been achieved, hence the first state is Globally Asymp-
totically Stable (GAS).

Therefore propose ê2 = x2i − xv
2i

and representing the
system in terms of the errors ê1i , ê2i , it yields

˙̂e1i =−ê2i − ᾱ1ê1i (33)

˙̂e2i =Uxi −
1

∑ai j

[
∑ai j ẍ1 j + ᾱ1 ˙̂e1

]
(34)

Propose the following Lyapunov function for the new
system representation

V (ê1i , ê2i) =
1
2

ê2
1i
+

1
2

ê2
2i

(35)

then
V̇ (ê1i , ê2i) = ê1i

˙̂e1i + ê2i
˙̂e2i (36)

Introducing (33) and (34) into (36)

V̇ (ê1i , ê2i) =ê1i(−e2i − ᾱ1ê1i)+ e2i

[
Uxi+

1
∑ai j

∑ai j ẍi j + ᾱ1 ˙̂e1i

] (37)
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Selecting the control law as

Uxi =∑ai j ∑ai j ẍi j− ᾱ1 ˙̂e1i − ᾱ2ê2i

+ ᾱ1ê1i ê2i

(38)

implies that

V̇ (ê1i , ê2i) =−ᾱ1ê2
1i
− ᾱ2ê2

2i
≤ 0

hence the system will have a stable behavior. Similar results
are obtained when using this methodology for computing the
control position for the y axis.

V. NUMERICAL VALIDATION

In this case, the algorithm is done for three agents but it
can be extended for n-agents. The nominal parameters for
each quadrotor for simulation purposes and the gains used
in simulations are

Parameter Value Parameter Value
Ω 0.01 g 9.81 m

s2
Iz−Ix

Iy
0.01 m 0.5 kg

Ix−Iy
Iz

0.001 Iy−Iz
Ix

0.001
Ir
Iy

0.001 Ir
Ix

0.001
Ir
Iy

0.001 l
Ix

0.15
l
Iy

0.15 1
Iz

0.15
αi 5

For simulations three formations are considered and two
topologies, firstly, the are considered to shape a vertical and
horizontal line between quadrotors with a relative distance of
1 meter between consecutive agents and the last formation
is a triangular formation. In the first formation, the initial
position of each agent is not relevant, in fact it could be in
a random position in the xy plane and the last position are
considered to make a vertical line between quadrotors as can
be seen in Figure 1a.

In Figure 1b the agent 0 tries to keep its position and
the agent 1 and 2 are moving to change the formation to a
horizontal line, notice that in this simulation the center of
the formation is not moved.

A triangular formation is presented in Figure 1c but not
just the formation is shown but also the fleet of drones are
moving this is to verify that this algorithm is useful to follow
a desired trajectory.

In the following equation the topologies considered for the
simulations are shown and they are related with the Laplacian
matrices.

L1 =

 1 −1 0
0 1 −1
−1 0 1


L2 =

 1 0 −1
−1 1 0
0 −1 1

 (39)
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(c) Vertical to triangular formation

The Matlab simulation is not the only numerical validation
for the flight formation algorithm, at the Heudiasyc Labora-
tory a simulator has been developed and is very close to
the real validation, in fact, once the algorithm is proved in
this simulator the possibilities to achieve the experimental
validation in the laboratory platforms are very high, see
Figure 2.

For the tests in this simulator, three quadrotors are consid-
ered, at the beginning they have default or home positions
and can be modified anytime for the user, when the algo-
rithm begins the agents form a horizontal line, the second
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Fig. 2: Flair simulator developed at Heudiasyc laboratory.

configuration is a vertical line and the last one is a triangular,
all the formations are done continuously, this is, while the
agents are flying they can change the positions to achieve
each formation, the behavior of each flight formation can be
seen in Figure 4.

The last test is the trajectory tracking while the quadrotors
try to keep a triangular formation, in Figure 3 the perfor-
mance of the algorithm.

VI. CONCLUSION

A Backstepping algorithm was presented to achieve flight
formation between aerial agents, it has been tested to control
the position of three agents with quadrotor dynamics. The
control strategy was obtained in detail showing the stability
analysis via the Lyapunov theory.

The change of communication topology was done while
the quadrotors are flying and it has been observed that the
performance was not degraded.

Future work includes the real validation in our aerial
platforms of the proposed algorithm.
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Fig. 3: Flight formation with trajectory tracking.
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Fig. 4: Numerical validation with the Flair simulator/
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