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Abstract— This work presents initial experimental results
of an adaptive sliding-mode extremum seeker that minimizes
the hydrogen consumption in a fuel cell based system. The
extremum seeker is based on the classical steepest-descent
method, the main challenge being the fact that the gradient
of the objective function is unknown. The gradient is estimated
by means of a sliding-mode adaptive estimator. The strategy is
applied in experimental practical situations in a fuel cell test
bench, this allows to asses the performance of the scheme as
well as the difficulties that arise in real applications.

I. INTRODUCTION

Extremum seeking algorithms or self-optimizing con-

trollers deal with the problem of minimizing or maximizing

an objective function based on a set of decision variables.

Extremum seeking control can be traced back as far as 1922

(see [1] and references therein) and since the 1950’s it has

experienced a moderate but sustained development. Early

extremum seekers were based on the assumption that the

input (decision variable) to output (objective function) map

was static. Under this assumption, one possibility to attain

an extremum is to first estimate the slope of the input–output

map and then design a control law to keep the slope as close

to zero as possible.

A popular strategy for estimating the slope consists on

exciting the plant with a sinusoidal input and multiplying

the output by another sinusoidal signal of the same fre-

quency and phase but possibly with a different amplitude.

The resulting signal is then delivered to a low-pass filter,

the output of which is roughly proportional to the slope

(see [2] for details). Intuitively, if a given plant has stable

and sufficiently fast dynamics, the actual dynamic input–

output map can be considered static and the same (or a

similar) algorithm can be used to find the desired extremum.

Although the idea is straightforward, the formal analysis is

complicated and it was not until the 2000’s that rigorous

stability proofs of such schemes were given [2], [3], [4],

[5]. Besides the stability proofs, some trade-offs between

rate of convergence, domain of attraction and steady-sate

error can be found in [3], [4], [5]. However, the absence

of quantitative relationships between these variables result
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in a lack of definite guidelines for tuning these algorithms,

so the extremum seeking problem is far from closed.

Another approach consists on deriving a model for the

plant. The slope is then computed analytical as a function of

the system states and the known and unknown parameters.

Adaptive control techniques are then applied for estimating

the unknown parameters (e.g., [1], [6], [7]). The applicability

of this strategy clearly breaks down as the system size and

complexity increase.

A. Contribution

In this paper we propose to estimate the slope (or gradient)

by exploiting the fact that the gradient is simply a linear (but

time-varying) map between the time derivatives of the input

and the output. We use a uniform exact differentiator [8] to

differentiate the required signals and regard the gradient as

parameter to be estimated. We estimate the parameter with an

adaptive scheme based on sliding modes. The use of sliding

modes is motivated by the need to estimate a time-varying

parameter, i.e., as opposed to the classical adaptive schemes,

which are only able to track constant parameters1.

The algorithm is tested on an experimental PEM fuel cell

generation system (FCGS), for which we wish to minimize

the hydrogen consumption. The outcomes of the experiment

show that the proposed algorithm is simple, effective and

easy to implement.

B. Paper structure

The following section provides details about the FCGS,

which mainly comprises a central PEMFC stack and aux-

iliary units (Fig. 1). It is assumed that the input reactant

flows are efficiently humidified, that the stack temperature

is well regulated by dedicated controllers and that sufficient

compressed hydrogen is available, so the main attention is

focused on the air management system. Section III describes

the extremum seeker and Section IV presents the experimen-

tal results. Conclusions are given on the last section.

II. EXTREMUM SEEKING PROBLEM STATEMENT IN PEM

FCGS

A. PEM Fuel Cell Generation System

In a few words, the laboratory test plant considered in this

work comprises a central PEMFC stack and auxiliary units.

Details of the test station are shown in Fig. 2 and a schematic

diagram of the system is depicted in Fig. 1, where the main

subsystems can be briefly described as follows:

1See [9] for a similar strategy in the discrete-time scenario.
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Fig. 1. Schematic diagram of the laboratory PEM fuel cell based generation
system (FCGS) at IRI (CSIC-UPC).

• Air Compressor: 12 V DC oil-free diaphragm vacuum

pump. The input voltage of this device is used as the

control action.

• Hydrogen and oxygen humidifiers and gases line-

heaters: these are used to maintain proper humidity

and temperature conditions inside the cell stack, an

important issue for PEM membranes. Cellkraftr mem-

brane exchange humidifiers are used in the current set-

up, while decentralized PID controllers ensure adequate

operation values.

• Fuel cell stack: an ZBTr 8-cell stack with Nafion 115r

membrane electrode assemblies (MEAs) is used, 50 cm2

of active area and 150 W of maximum power.

Fig. 2. Picture of the laboratory test station at IRI (CSIC-UPC)

In addition, to measure the required and further experimen-

tal data, different sensors were incorporated into the system

for modeling purposes: an air mass flow meter (range 0-

15 slpm) at the end of the compressor to measure its air flow

(Wcp), a piezoresistive pressure transducer (range 0-2 bar)

to measure the cathode and anode stack pressure (Pca and

Pan), piezoresistive differential pressure transducers (range 0-

250 mbar) to measure the stack pressure drop, a tachometer

(range 0-3000 rpm) on the motor shaft to measure its speed

(ωcp), a current clamp (range 0-3 A) and a voltage meter

(range 0-15 V) to measure the motor stator current (Icp) and

its voltage (Vcp), respectively. Besides, temperature sensors

are arranged in order to register the different operation

conditions. For further details refer to [10], where the most

relevant components are characterized.

In the sequel, the following modeling assumptions have

been considered [10], [11]:

• The air compressor behaves as a parasitic load to the

stack.

• A mass flow control device (WH2
) ensures a constant

hydrogen stoichiometry supply, usually close to 1.5.

• An auxiliary control system efficiently regulates tem-

peratures at five points of the plant: cathode and anode

humidifiers (Thum,ca and Thum,an), cathode and anode line

heaters (Tlh,ca and Tlh,an) and stack (Tst ).

• A humidity control loop regulates the water injection of

the humidifiers to a relative level close to 100 %.

• The fuel cell model is one dimensional, so the gases

and reactions are considered uniformly distributed in

the cell.

• The electrochemical properties are evaluated at the aver-

age stack temperature (70◦C), so temperature variations

across the stack are neglected.

• The water entering the cathode and anode is only in

vapour phase.

• The effects of liquid water creation are negligible at the

gas flow model level.

• The water activity is uniform across the membrane and

is in equilibrium with the water activity at the cathode

and anode catalyst layers.

The nonlinear model of the plant under study was already

developed and validated in [10], [11]. In general terms,

the modeling process was conducted following a modular

methodology, combining a theoretical approach together with

empirical analysis based on experimental data. Taking the

state vector x ∈ R
7 of the complete nonlinear model, the

control input for the current study is the compressor voltage

Vcp ∈R, the external disturbance is the load power Pload ∈R

and the output is the stack current Ist ∈R. Accordingly, the

system can be represented by the following continuous state-

space equation:

ẋ = f (x,Vcp,Pload) , (1)

where f : R9 →R
7 and the state variables are defined as

• x1 = ωcp: motor shaft angular velocity;

• x2 = mhum,ca: air mass inside the cathode humidifier;

• x3 = mO2,ca: oxygen mass in the cathode channels;

• x4 = mN2,ca: nitrogen mass in the cathode channels;

• x5 = mv,ca: vapour mass in the cathode channels;

• x6 = mH2,an: hydrogen mass in the anode channels;

• x7 = mv,an: vapour mass in the anode channels.

(See [11] for details.)
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Fig. 3. Block diagram of the complete system. The fuel cell has state
x, control Vcp (compressor voltage) and perturbation Pload (power load). A
super twisting controller regulates Wcp (compressor’s air flow) to a desired
reference Wcp,re f . For a given Pload and and a given set of parameters, the
fuel cell carries a stack current Ist which depends on Wcp,re f . An extremum
seeker is placed to find the optimal W ∗

cp,re f that yields the minimum Ist .

B. Optimization Problem

The objective of this case study is to optimize the hydro-

gen consumption of the FCGS in every operating condition.

Recall that both, the hydrogen and the oxygen consumed in

the reaction (WH2,react and WO2,react ), are directly proportional

to the stack current,

WH2,react = GH2

nIst

2F
and WO2,react = GO2

nIst

4F
,

where GH2
and GO2

stand for the molar mass of hydrogen

and oxygen, respectively; n is the total number of cells of the

stack and F is Faraday’s constant [10]. Therefore, minimiz-

ing the hydrogen consumption is equivalent to minimizing

the stack current for a given (unknown) load power.

Instead of using the control Vcp directly as our decision

variable for optimizing Ist , we proceed in two steps: First

we design a low level controller to regulate the air flow

released by the compressor, Wcp. By regulating Wcp, the

compressor dynamics are isolated from the fuel cell and,

in addition, oxygen starvation can be averted in order to

extend the stack’s lifetime. On a second step, we construct

an extremum seeker that will look for the value of Wcp for

which Ist is minimal.

The problem of regulating Wcp is solved by using higher-

order sliding-mode control. Roughly speaking, we write Wcp

as a function of the states, Wcp =W (x1,x2), and propose the

error function

s =W (x1,x2)−Wcp,re f

with Wcp,re f the desired air flow. The error function is then

taken to zero in finite time by means of a super twisting

controller (see [12] for details).

The regulated system can be regarded as a new system

ξ̇ = F(ξ ,Wcp,re f ,Pload) (2a)

Ist = h(ξ ,Wcp,re f ,Pload), (2b)

where ξ is the new state vector (consisting on the plant and

controller states), Wcp,re f is the new input and Ist the output

(see Fig. 3).

Notice that low air mass flow implies low stack voltage

and, hence, higher stack current in order to deliver the

required Pload . At the same time, a higher air mass flow

would require a higher compressor current, which would

also increase Ist . Thus, if continuity holds, there must be

a minimizing value of air mass between the two extrema

of air mass flow. Indeed, the input-output maps depicted in

Fig. 4 show that such minima exist. What is more, the maps

can be reasonably approximated by convex functions. This

results were obtained at fixed operation conditions of inlet

gases humidities, temperature and hydrogen stoichiometry.

Nevertheless, similar results showing the existence of global

minima were obtained in other working conditions.

We approach the problem of finding the optimal value

W ⋆
cp,re f by making two more assumptions. The first one is:

• The fuel cell dynamics are stable. Pload varies slowly

enough and the fuel cell dynamics are fast enough so

that the map Wcp,re f 7→ Ist can be considered static.

More precisely, we assume that for slowly varying Wcp,re f

and Pload , the system quickly reaches a unique quasi-static

equilibrium ξ = φ(Wcp,re f ,Pload) defined by

F
(

φ(Wcp,re f ,Pload),Wcp,re f ,Pload

)

= 0.

When substituted in (2b), the quasi-static equilibrium

yields the static map

Ist = H
(

Pload,Wcp,re f

)

:= h
(

φ(Wcp,re f ,Pload),Wcp,re f ,Pload

)

.

To simplify the notation, we will further define

HP(Wcp,re f ) := H(Wcp,re f ,Pload).
The second assumption is:

• The map Ist = HP(Wcp,re f ) is twice continuously differ-

entiable, satisfies the bounds

0 < ρ1 ≤
∂ 2HP

∂W 2
cp,re f

(Wcp,re f )≤ ρ2

and attains a minimum I⋆st at some W ⋆
cp,re f .

That means that, for every Pload , HP is strictly convex and has

a minimum. Fig. 4 and further experiments suggest that this

assumption is reasonable within a wide fuel cell’s operation

range.

For convex HP the optimal value could be easily obtained

using the steepest-descent algorithm

Ẇcp,re f =−γ
∂HP

∂Wcp,re f

(Wcp,re f ) (3)

with γ > 0 the algorithm’s gain, if the function HP is known.

Indeed, it can be shown that for convex HP the scheme (3)

implies that Wcp,re f →W ⋆
cp,re f as t →∞. In practice, however,

HP contains many unknown parameters (including Pload) so

knowledge of this function is unrealistic. The main idea

is to use an adaptive sliding mode scheme to estimate
∂HP

∂Wcp,re f
(Wcp,re f ) on-line. Details are given in the next section.
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Fig. 4. Steady-state analysis of the system performance in different load
conditions

III. ADAPTIVE EXTREMUM SEEKING

Since (3) is not implementable, we propose instead

Ẇcp,re f =−γ · ẑ+ d, (4)

where ẑ is an estimate of the gradient

z :=
∂HP

∂Wcp,re f

(Wcp,re f ) (5)

and d is a dither signal required to obtain a good estimate

of z. To perform such estimation, we propose an adaptive

sliding-mode estimator of the form

˙̂z = kz sign
(

(İst − ẑ ·Ẇcp,re f )Ẇcp,re f

)

, ẑ(0) = 0, (6)

where kz > 0 is the estimator gain, İst is obtained using the

uniform exact differentiator described in [8] and Ẇcp,re f is

obtained directly from (4).

The following lemma shows that, for kz large enough, ẑ

converges to the value of the true gradient z whenever z is

not too far from the origin.

Lemma 1: Suppose that Ẇcp,re f 6= 0 almost everywhere

(a.e.) and suppose that

kz ≥ ρ2

(

γ ·δ0 + d̄
)

+ δ1 (7)

for some positive constants δ0 and δ1. Then, for all z such

that |z| ≤ δ0, the solutions ẑ of the estimator (6) converge to

z in finite time.

The condition Ẇcp,re f 6= 0 a.e. corresponds to the so-called

persistence of excitation condition [13] and is guaranteed by

the dither signal, which is typically a sinusoidal function of

small amplitude.

Proof: Notice from (5) that

İst = z ·Ẇcp,re f . (8)

Using (8) we can rewrite (6) as

˙̂z = kz sign
(

(z− ẑ)Ẇ 2
cp,re f

)

.

Since Ẇcp,re f 6= 0 almost everywhere, we have

˙̂z = kz sign(z− ẑ) a.e. (9)

Let s := z− ẑ be the sliding variable. Its time derivative is

given by

ṡ = ż− ˙̂z =−kz sign(s)+ ż a.e. (10)

Now we can take the standard approach to prove that s → 0

in finite time: Define a Lyapunov function Vs(s) = s2/2 and

compute its time derivative along the trajectories of (10), i.e.,

V̇s = s · ṡ ≤−|s|(kz −|ż|)≤−|s|(kz −ρ2|Ẇcp,re f |) a.e.

(11)

From |Ẇcp,re f | ≤ γ · |z|+ d̄ (cf. (4)), (7) and (11), we have

V̇s ≤−δ1|s| a.e. (12)

Thus, the time derivative is negative. This proves that the

point s = 0 is an asymptotically stable equilibrium of (10).

To show convergence in finite time, notice that (11) can be

rewritten as V̇s ≤−δ1

√
Vs, a.e., which implies that

Vs(t)≤
(

√

Vs(0)−
δ1

2
t

)2

.

It follows that at the time

t1 = 2

√

Vs(s(0))

δ1

(13)

we have Vs(t1) = 0 (hence s(t1) = 0).

For convex HP the condition z = 0 is necessary and

sufficient for Ist to attain its minimum value, but because

of the presence of d, z cannot be made exactly equal to

zero. It is possible, however, to drive |z| to a small value

proportional to d̄ := supt |d|.
Theorem 1: Suppose that the conditions of Lemma 1 hold.

Then,

limsup
t→∞

|z| ≤ d̄

γ
,

that is, z converges to the ball of radius d̄/γ and center equal

to zero.

Proof: Define a candidate Lyapunov function Vz(z) =
z2/2. Notice from (5) and (4) that

ż =
∂ 2HP

∂W 2
cp,re f

(Wcp,re f )Ẇcp,re f =− ∂ 2HP

∂W 2
cp,re f

(Wcp,re f )(γ · ẑ−d).

From Lemma 1 we know that, during the sliding motion (i.e.,

for t ≥ t1), z = ẑ so

ż =− ∂ 2HP

∂W 2
cp,re f

(Wcp,re f )(γ · z− d).

and

V̇z =− ∂ 2HP

∂W 2
cp,re f

(Wcp,re f ) ·
(

γ · z2 − z ·d
)

≤−ρ1|z| ·
(

γ · |z|− d̄
)

.

Thus, V̇z is negative whenever |z| > d̄/γ . This implies that

|z| decreases monotonically whenever z is outside the ball of

radius d̄/γ .
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IV. EXPERIMENTAL RESULTS

A. Algorithm Performance

In the current section, the performance of the FCGS

is evaluated under the action of the extremum seeking

supervisor control presented in section III, demonstrating its

tracking performance and robustness. The complete control

strategy was implemented in the data acquisition & control

system. It is composed of two computers (each with four

cores i5 processor at 2.6 GHz clock frequency): the host and

the real-time operating system (RTOS). The host provides a

LabViewr based development environment and the graphical

user interface. It is responsible for the start up, shut down,

configuration changes and control settings during operation.

The RTOS implements the control algorithms and the data

acquisition via a field-programmable gate array (FPGA), in

order to have high speed data processing. Control, secu-

rity and monitoring tasks are conducted by a CompactRIO

(reconfigurable Input/Output) system from National Instru-

ments. In order to record the analog sensor signals, a 32-

channel 16-bit analog input module from National Instru-

ments is used (NI-9205). A 8-channel, digital input/output

(I/O) module generates the necessary transistor-transistor

logic (TTL) signals for different security and diagnostic

tools.

To begin with, the FCGS net power was set to 40 W and

the extremum seeking algorithm was connected to check its

behaviour in real conditions (Fig. 5). Five different variables

can be simultaneously appreciated, the stack current (Ist(t)),
the compressor air flow (Wcp(t)), the the stack current first

derivative (dIst/dt), the compressor air flow first derivative

(dWcp/dt) and the system gradient (θ (t)). Note that the al-

gorithm efficiently drives the current to its global minimum.

In this case, the dither frequency was set to 0.1 Hz and its

amplitude to 0.2 slpm.

Fig. 5. Extremum seeking test: system tracking at 40 W

In Fig. 6 the optimization (hydrogen minimization) at

Pnet=60 W is depicted, obtaining efficiency improvements

up to 40 %. Moreover, in this operation mode an adequate

comburent flow is always ensured through the stack (oxygen

stoichiometry > 1), while the load demand is satisfied with

minimum fuel consumption.

The following experiment was conducted imposing a net

power change between 40 W and 60 W (Fig. 7). In this test, it

Fig. 6. Extremum seeking test: system tracking at 60 W

is shown that the system under control efficiently converges

to the global minimum once the flow dynamics is elapsed

and the plant can be considered as a static one.

Fig. 7. Extremum seeking test: Pnet change between 40 W and 60 W

In the last figure (Fig. 8) the same test is presented, but

the difference is that it clearly shows the system trajectory in

the static planar map Wcp vs. Ist . During the first 20 seconds

of the experiment (blue line), the system was driven from

40 W to 60 W of net power, note that this change was done

gradually and through steps in order to keep the fuel cell

stack in a nominal operation. Then once the system was set

to 60 W, it can be seen how the extremum seeking algorithm

stabilizes the current close to its minimum (red line). For the

sake of comparison, please refer to Fig. 4.

Fig. 8. Extremum seeking algorithm test: system trajectory on the static
planar map Wcp vs. Ist
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V. CONCLUSIONS

An adaptive sliding-mode extremum algorithm has been

proposed to minimize the hydrogen consumption in PEM

fuel cell based systems. Special attention has been paid to

the implementation aspects and initial experimental results.

The algorithm evaluation has been conducted using a lab-

oratory platform under different practical scenarios, showing

its viability and suitability for energy efficiency improvement

in fuel cells. The proposed control strategy has exhibits

promising experimental results since, at least for the experi-

ments carried out so far, the controller steers the air flow to

a small neighborhood of its optimal value.
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