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Abstract— Passivity-based controllers (PBCs) achieve stabi-
lization of nonlinear systems, rendering the closed-loop passive
with a desired energy (storage) function. A natural question is
under which conditions is it possible to make this function equal
to the difference between the plant and controller energies—
when the controller is said to be energy-balancing. In this paper
we prove that a necessary and sufficient condition for energy-
balancing is that the open and the closed-loop systems have
the same dissipation functions and passive outputs. A second
contribution of our work is the identification of a new passive
output for port-Hamiltonian systems, which is invariant to the
action of PBCs that modify only the energy function—so-called
basic interconnection and damping assignment PBCs—proving
that they are energy-balancing. To establish these results a new
algebraic framework for analysis and design of PBCs, centered
around the principles of output and dissipation invariance, is
developed. Using this framework several PBC schemes reported
in the literature are compared. Also, we present a systematic
procedure to generate new passive outputs, this result is of
interest on its own, since it allows to extend the applicability
of PBC to systems that are non-minimum phase and/or have
relative degree larger than one.
Index Terms— Passivity-based control, port-Hamiltonian sys-

tems, Energy-balance, Interconnection and Damping Assign-
ment

I. INTRODUCTION

In standard passivity-based control (PBC), the fundamen-
tal problem of feedback stabilization of nonlinear systems is
reformulated in terms of feedback passivation. The objective
is to find a state-feedback control law that renders the
closed-loop system strictly output passive with a storage
function having an isolated minimum at the given equilib-
rium and, to ensure asymptotic stabilization, a detectable
passive output. Interested readers are referred to [1] for a
tutorial account on this state-feedback approach to PBC,
that is called “standard PBC”, and to [2] for a historical
review of PBC. A particular case of standard PBC is the
so-called energy-shaping plus damping-injection technique,
where the system is first rendered passive and then extra
damping is introduced feeding back the passive output to
ensure asymptotic stability.1 An alternative, and far reaching,
viewpoint of PBC as interconnection of dynamical systems,
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1As shown in [3], the separation of the PBC design in two steps induces
a loss of generality.

instead of a state-feedback action, may be found in [4],
[5], [1]—see also [6], where standard PBCs are obtained
as restrictions of these dynamic controllers.

The selection of the desired energy function in standard2

PBC is, similarly to the selection of a Lyapunov function,
a non-trivial task. In this paper it is assumed that the
original system is cyclo-passive, see Assumption 1. This
condition is a restatement of energy conservation, where
the energy function is not required to be bounded from
below. Hence, it is a rather weak assumption, verified by
most physical systems, that does not imply any stability
property whatsoever. Under the aforementioned assumption,
the most natural desired storage function candidate is the
difference between the energy of the plant and the energy
of the controller. PBCs that verify this property are said to
be energy-balancing (EB) [5]. A fundamental question that
arises is then: Under which conditions a PBC is EB?

In [5] it is shown that, if the PBC ensures stability, a
necessary condition for EB is that the dissipation function is
equal to zero at the desired equilibrium, which consequently
means that the system can be stabilized extracting a finite
amount of energy from the controller. In this paper we prove
that, even without the stability requirement, a necessary
and sufficient condition for EB is that the open and the
closed-loop systems have the same dissipation and output
functions—hence providing a complete characterization of
EB PBC.

Dissipation assignment has traditionally been regarded as
an auxiliary, or even secondary, step to energy-shaping. The
fundamental result mentioned above underscores the central
role it plays in the understanding of PBC that motivates the
development of a new algebraic framework for analysis and
design of PBCs, centered around the principles of output
and dissipation invariance. Using this framework several
PBC schemes reported in the literature are compared in
this paper, including the well-known Interconnection and
Damping Assignment (IDA) PBC, in its basic and general
formulations [7], [6], [8]. In Basic IDA (BIDA) it is assumed
that the plant is described by a port-Hamiltonian model and
the objective is to shape only the energy function—without
modifying the interconnection and damping matrices. A
second contribution of our work is the identification of a
new passive output for port-Hamiltonian systems, which is

2For brevity, in the sequel the “standard” qualifier is omitted, in the
understanding that we are dealing all the time with state-feedback PBC.
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invariant to the action of BIDA. Combining this result with
the characterization of EB mentioned above shows that BIDA
is EB. To establish these results a systematic procedure to
generate new passive outputs is presented. The procedure
is of interest on its own, since it allows to extend the
applicability of PBC to systems that are non-minimum phase
and/or have relative degree larger than one.

In the following section the PBC problem is formulated
and an algebraic characterization, in terms of the added
energy function and added dissipation, is given. In Section III
the equivalence between dissipation and output invariance
and the property of EB of PBC is established. In Section IV
it is shown that, by suitably assigning the dissipation of the
closed-loop system, it is possible to recover several exist-
ing PBCs—providing a framework to classify and compare
them. In Section V, a procedure to generate zero-relative-
degree passive outputs is proposed and the EB property of
BIDA is established. Finally, we present the conclusions in
Section VI.

Notation: The arguments of the functions are omitted
once they are defined and there is no possibility of confusion.
For a distinguished element x� ∈ R

n and a given function
f : R

n → R
m we denote the constant vector f� := f(x�).

II. STANDARD PASSIVITY-BASED CONTROL

A. Definition of Passivity-Based Control

Consider a nonlinear system described by equations of the
form

Σ :

{
ẋ = f(x) + g(x)u
y = h(x)

, (1)

where x ∈ R
n is the state, u ∈ R

m is the input and y ∈ R
m is

the output. The remaining functions, f , g and h, are assumed
to be smooth and of appropriate dimensions. The matrix g

is assumed to be full rank—uniformly in x. We also impose
the following.
Assumption 1: Σ is cyclo-passive. That is, there exists a

C1 function H : R
n → R, called the storage function, such

that, for all x0 ∈ R
n, all t ≥ 0 and all input functions u(t)

H(x(t)) − H(x(0)) ≤

∫ t

0

h�(x(s))u(s)ds , (2)

where x(0) = x0 and x(t) is the state of Σ at time t

resulting from initial condition x0 and input function u(t).3

Equivalently, if and only if

Ḣ ≤ y�u . (3)
Recall that a system is passive if it is cyclo-passive and H

has a minimum [1]. Clearly, every passive system is cyclo-
passive but the converse is not true. In terms of energy
exchange, cyclo-passive systems exhibit a net absorption of
energy along closed trajectories [9], while passive systems
absorb energy along any trajectory that starts from a state of
minimal energy x(0) = arg minH(x).

3Of course, we require that the integral in (2) is well defined.

The celebrated Hill-Moylan’s Theorem [9] gives, in the
spirit of Kalman-Yakubovich-Popov’s Lemma, an algebraic
characterization of cyclo-passive systems.4
Theorem 1: The system Σ (1) is cyclo-passive with stor-

age function H if and only if there exists a function d :
R

n → R+, called the dissipation function, such that,

∇H�(x)f(x) = −d(x) (4a)
h(x) = g�(x)∇H(x) . (4b)

Using Hill-Moylan’s Theorem one obtains the power bal-
ance equation for Σ

Ḣ = y�u − d . (5)

The objective in PBC is to “shape”, via state-feedback (5).
More precisely:
Definition 1 (The set PBC): The state-feedback uSF :

R
n → R

m is said to be a PBC (shorthand notation: uSF ∈
PBC) if and only if there exist functions Hd : R

n → R and
hd : R

n → R
m such that

u = uSF + v (6)

with v a new, virtual input, renders the closed-loop system

Σd :

{
ẋ = fd(x) + g(x)v

yd = hd(x)
(7)

where fd(x) := f(x) + g(x)uSF(x), cyclo-passive with
storage function Hd(x). That is, if it verifies

Ḣd ≤ y�

d v . (8)
From Hill-Moylan’s Theorem we have that the new power

balance becomes

Ḣd = y�

d v − dd . (9)

where the new dissipation dd : R
n → R+ is given by

dd(x) = −∇H�

d (x)(f(x) + g(x)uSF(x)) (10)

Comparing the open-loop power balance (5) with the closed-
loop power balance (9) we observe that, besides the energy
and the dissipation, the output has also been modified. Since
full-state-feedback is assumed, there is—a priori—no reason
to maintain the original output y as the cyclo-passive output.
We thus take the liberty to define the new output that,
according to Proposition 1, should be of the form

yd = hd = g�∇Hd . (11)

This approach differs from the classic problem formulation
of [10], where feedback passivation is defined (and sought)
with respect to the original output. Changing the output is a
natural way to satisfy the vector relative degree requirement
and to overcome the minimal phase restriction on the plant.
In terms of the usual analogy between passive systems and
electrical ports, the change of the output corresponds to the
addition of a current source h − hd (see Figure 1).

4For ease of presentation a version of the theorem for systems with
relative degree one is given first. In Section V the general version is stated.
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Fig. 1. Adding a current source to create a new passive output.

Remark 1: Definition 1 has been intentionally stated in a
fairly general way. Notice, e.g., that a null control uSF = 0
satisfies the requirements of the definition (take Hd = H

and dd = d).
Remark 2: As announced above an algebraic framework

to derive particular subsets of the set PBC will be proposed.
To simplify notation we say uSF ∈ Ω, where Ω ⊂ PBC
is either one of the sets {EB, BIDA, IDA}, consisting of
particular classes of PBCs—to be defined later.

B. Characterizing Passivity-Based Controllers
The following proposition, which constitutes the main

thread of the paper, gives an algebraic characterization of
the set PBC.
Proposition 1: uSF ∈ PBC if and only if there exist

functions Ha : R
n → R and da : R

n → R, with

da(x) ≥ −d(x),

such that

h�(x)uSF(x) = −∇H�

a (x)(f(x) + g(x)uSF(x)) − da(x) .

(12)
Proof: To prove sufficiency, assume that (12) is satisfied

and define

Ha := Hd − H and da := dd − d ≥ −d . (13)

so that (12) can be rewritten as

h�uSF = −(∇Hd −∇H)�(f + guSF) + d − dd

or, equivalently, as

(h − g�∇H)�uSF = (d + ∇H�f) −∇Hdfd − dd . (14)

From (4) and Assumption 1 we know that h − g�∇H = 0
and d + ∇H�f = 0, so (14) becomes ∇Hdfd = −dd.
Take hd as in (11). According to Hill-Moylan’s Theorem,
the system Σd is cyclo-passive.

For necessity, assume that Σd is cyclo-passive with storage
function Hd and output hd. Again, from Hill-Moylan’s
Theorem, we know that

∇H�

d fd = −dd . (15)

From (13) and fd = f + guSF, equation (15) becomes

(∇Ha + ∇H)�(f + guSF) = −da − d

⇔ ∇H�guSF = −∇H�

a (f + guSF) −

− da − (∇H�f + d) .

Since ∇H�g = h and ∇H�f + d = 0, we get

h�uSF = −∇H�

a (f + guSF) − da .

This completes the proof.

III. ENERGY-BALANCING PBC
As indicated in the Introduction the most natural desired

storage function candidate is the difference between the
energy of the plant and the energy of the controller, that
is

Hd(x(t)) = H(x(t)) −

∫ t

0

h�(x(s))uSF(s)ds.

This motivates the definition of the following subset of PBC.
Definition 2 (Energy-Balancing): A PBC for the cyclo-

passive system Σ (1) is said to be EB (i.e., uSF ∈ PBC ∩ EB)
if and only if

−y�uSF = Ḣa , (16)

where Ha is defined in (13).
Proposition 2: uSF ∈ PBC ∩ EB if and only if, the output

and the dissipation remain invariant. That is, if and only if
(9) holds with5

yd = y, dd = d.

Proof: To prove sufficiency, assume dd = d (i.e., da =
0) and yd = y. Since yd = g�∇Hd and y = g�∇H , yd = y

holds if and only if g�∇Hd = g�∇H or, equivalently, if
and only if

g�∇Ha = 0 . (17)

Substituting (17) in (12) yields

h�uSF = −∇H�

a f . (18)

On the other hand, equation (17) implies that

Ḣa = ∇H�

a [f + g(uSF + v)] = ∇H�

a f . (19)

Combining (18) and (19) one gets −h�uSF = Ḣa (i.e., uSF ∈
EB).

For necessity, suppose that (16) holds. Then,

−h�uSF = ∇H�

a [f + g(uSF + v)]

⇔ −∇H�guSF = [∇Hd −∇H]�[f + g(uSF + v)]

⇔ −∇H�guSF = ∇H�

d fd + ∇H�

d gv −

−∇H�[f + gv] −∇H�guSF

or, equivalently,

∇H�

d fd −∇H�f = −∇H�

d gv + ∇H�gv

⇔ ∇H�

d fd −∇H�f = −∇H�

a gv . (20)

5A PBC that satisfies these conditions is said to be output- and dissipation-
preserving, respectively.
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Equation (20) must hold for all v, in particular, for v = 0.
This implies that ∇H�

d fd = ∇H�f , which is equivalent to
dd = d. Thus, equation (20) becomes

∇H�

a gv = 0 ∀ v ,

which implies ∇H�
a g = 0. As stated before, this is equiva-

lent to yd = y.

IV. OVERCOMING THE DISSIPATION OBSTACLE

A. Stabilization and the Dissipation Obstacle
When PBC is used for stabilization of an equilibrium,

x� ∈ R
n, the storage function is typically used as a Lyapunov

function, so it is required that

x� = arg minHd . (21)

Since ∇H�
d = 0 is a necessary condition for (21) it is clear

from (11), that the output yd must be zero at the equilibrium
(i.e., y�

d = 0). Likewise, from equation (10), we also have
that the dissipation at the equilibrium must be zero (i.e., d�

d =
0). EB PBCs, that preserve output and dissipation, impose
then to the open-loop system that

d� = −(∇H�)
�

f� = 0, y� = 0.

This is the so-called dissipation obstacle [5].

B. IDA PBC
It is clear that dissipation should be modified to stabilize,

with PBCs, systems that dissipate energy at the equilibrium.
A candidate dissipation function dd, which is compatible
with the requirement d�

d = 0 and overcomes the dissipation
obstacle, is given in the following proposition, where the
well-known IDA PBC is re-derived.
Proposition 3: Fix

dd(x) = ∇H�

d (x)Rd(x)∇Hd(x) (22)

with Rd : R
n → R

n×n, Rd = R�

d ≥ 0.
(i) uSF ∈ PBC if and only if

g(x)uSF(x) = −f(x) − Rd(x)∇Hd(x) + α(x) (23)

for some function α : R
n → R

n such that α�∇Hd is
identically zero. Then:

(ii) If x� is an equilibrium of the closed-loop that satisfies
(21) then α� = 0

(iii) For any Jd : R
n → R

n×n, Jd = −J�

d , the function

α(x) = Jd(x)∇Hd(x),

satisfies both restrictions: α� = 0 and α�∇Hd = 0.
Furthermore, the closed-loop system, Σd, takes the port-
Hamiltonian (PH) [1] form6

Σd :

{
ẋ = Fd(x)∇Hd(x) + g(x)v

yd = g�(x)∇Hd(x)
, (24)

where Fd(x) := Jd(x) − Rd(x).

6In the literature of PH systems, Jd is called the interconnection and Rd

the damping. For obvious reasons, this control strategy is known as IDA [7].

Proof: For sufficiency of (i), assume (23) and premul-
tiply by ∇H�

d :

∇H�

d guSF = −∇H�

d f −∇H�

d Rd∇Hd

⇔

(∇H� + ∇H�

a )guSF = −∇H�

a f −∇H�f −

−∇H�

d Rd∇Hd .

By reordering terms we get

∇H�guSF = −∇H�

a (f +guSF)−∇H�f −∇H�

d Rd∇Hd .

(25)
Notice that the aggregated dissipation is

da = ∇H�

d Rd∇Hd + ∇Hf , (26)

So (25) can be expressed as

∇H�guSF = −∇H�

a (f + guSF) − da

⇔

h�uSF = −∇H�

a (f + guSF) − da .

Hence, according to Proposition 1, uSF ∈ PBC.
For necessity, assume that uSF ∈ PBC, i.e., that (12) holds.

Then, from (26),

∇H�guSF = −∇H�

a (f + guSF) −∇H�f −

−∇H�

d Rd∇Hd

⇔ 0 = ∇H�

d (guSF + f + Rd∇Hd) .

The latter implies the existence of a vector field α, satisfy-
ing (23) and

α�∇Hd = 0 .

Regarding (ii), notice that for a control that satisfies (23),
the drift fd = f + guSF of the controlled system is

fd = f − f − Rd∇Hd + α = −Rd∇Hd + α . (27)

If x� is an equilibrium of the closed-loop, then f�
d = 0 and

∇H�
d = 0. These equations, together with (27) imply that

α� = 0.
The first assertion of (iii) is proved by noting that ∇H�

d =
0 implies α� = J�

d∇H�
d = 0. Orthogonality follows from the

fact that ∇H�

d Jd∇Hd = 0 for any skew-symmetric matrix
Jd.

The second assertion of (iii) can be verified replacing α

in (27) to get:

fd = −Rd∇Hd + Jd∇Hd

= Fd∇Hd .

C. Basic IDA PBC
Although in some cases the choice of the matrices Jd and

Rd in IDA may be motivated by physical considerations,
besides the requirement of the solvability of the matching
equations, there are no general guidelines. If the original
system already has the PH form

Σ :

{
ẋ = F (x)∇H(x) + g(x)u
y = g�(x)∇H(x)

, (28)
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with F : R
n → R

n×n F + F� ≤ 0, one natural first choice
of Fd is simply

Fd = F .

In this case the controller is called Basic IDA (BIDA) and
the equation to solve is, according to (23),

guSF = −F∇H − Rd∇Hd + Jd∇Hd

= F∇Ha . (29)

Notice that, in general, in BIDA the dissipation is modified
from

d = −∇H�f = −∇H�F∇H = ∇H�R∇H

to

dd = −∇H�

d fd = −∇H�

d F∇Hd = ∇H�

d R∇Hd .

We close this section with an interesting property of BIDA
controllers.
Proposition 4: A BIDA controller that is output-

preserving is necessarily dissipation-preserving,
consequently, it is EB.

Proof: Premultiply (29) by ∇H�
a to obtain

∇H�

a guSF = ∇H�

a F∇Ha = −∇H�

a R∇Ha ,

where R(x) := − 1

2
(F (x) + F�(x)). Under the assumption

of output preservation, i.e., ∇H�
a g = 0, equation (17) shows

that ∇H�
a R∇Ha = 0. Since R is symmetric and positive

semidefinite,
R∇Ha = 0 .

This means that dissipation is preserved:

dd = (∇H + ∇H�

a )R(∇H + ∇Ha) = ∇HR∇H = d .

V. BASIC IDA-PBC IS ENERGY-BALANCING

In the preceding sections we used a particular version
of Hill-Moylan’s Theorem for systems without feedthrough
terms (cf. Theorem 1). In this section we show that the
incorporation of a feedthrough component allows to generate
new cyclo-passive outputs. In particular, to identify one
which is invariant to the action of BIDA. It turns out that
dissipation associated to the new output is also invariant
under BIDA. Output and dissipation invariance then establish
that BIDA is EB (with respect to the definition of the new
output).

A. Passivity-Based Control for Systems with Feedthrough
Let us start by recalling the general version of Hill-

Moylan’s Theorem [9].
Theorem 2: Consider a system with feedthrough de-

scribed by

Σj :

{
ẋ = f(x) + g(x)u

yj = hj(x) + j(x)u
, j ∈ R

m×m

where j : R
n → R

m×m and hj : R
n → R

m. Σj is cyclo-
passive with storage function H if and only if, for some q ∈

N, there exist functions l : R
n → R

q and w : R
n → R

q×m

such that

∇H�(x)f(x) = −|l(x)|2 (30a)
hj(x) = g�(x)∇H(x) + 2w�(x)l(x),(30b)

w�(x)w(x) =
1

2
(j�(x) + j(x)) , (30c)

with | · | the Euclidean norm.
The power balance equation for Σj is

Ḣ = (yj)�u − dj (31)

with the dissipation given by

dj(x) = |l(x) + w(x)u|2 . (32)

Theorem 2 can be used to construct new cyclo-passive
outputs. Indeed, it provides a means to parameterize the
output function hj and the dissipation function dj in terms of
the free square matrix j (hence the notation). If we set j = 0,
then Σj = Σ and, according to Assumption 1, equation (30a)
must hold for some l—hence, l is fixed. Now, for all j, whose
symmetric part is positive semidefinite, there always exist w

satisfying (30c). w can then be used to define, via (30b)
and (32), hj and dj , respectively.

Considering relative degree zero systems allows for an
extension, provided by the free matrix j, of the set PBC
given in Definition 1.7
Definition 3 (The extended set PBC): The state-feedback

uSF ∈ PBC if and only if there exists functions Hd : R
n →

R and h
j
d

: R
n → R

m such that the system

Σj
d

:

{
ẋ = fd(x) + g(x)v

y
j
d

= h
j
d
(x) + j(x)v

(33)

with fd(x) := f(x) + g(x)uSF(x), is cyclo-passive with
storage function Hd, i.e., it satisfies the dissipation inequality

Ḣd ≤ (yj
d
)�v .

Again, from Hill-Moylan’s Theorem we get the power
balance equation for Σj

Ḣd = (yj
d
)�v − d

j
d

, (34)

with dissipation

d
j
d
(x) = |ld(x) + w(x)v|2

and
h

j
d

= g�∇Hd + 2w�ld, (35)

where ld : R
n → R

q verifies

∇H�

d (x)fd(x) = −|ld(x)|2 (36)

and w satisfies (30c).

7To avoid cluttering the notation this new set is still called PBC.
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B. Generation of Cyclo-Passive Outputs for PH Systems
Although Proposition 2 is applicable to general nonlinear

systems, our interest in this paper is restricted to the case
when Σ is a PH system described by (28). For this class of
systems a new cyclo-passive output, which is an extension
of the power-shaping output introduced in [11] to the case
when F is not full rank, is constructed.

To present the main result, which is contained in Propo-
sition 5, the notion of generalized inverse of a matrix, a
technical assumption and two lemmata, are needed.
Definition 4: [12] Let A be an n × o matrix of arbitrary

rank. A generalized inverse of A is an o×n matrix A− such
that

AA−A = A .

It should be pointed out that, in general, A− is not unique;
but it always exists [12, Lemma 2.2.3].
Assumption 2: Σ is a PH system described by (28) and

satisfies
F�(F−)�F = F (37)

and
span g ⊆ span F . (38)

It is important to underscore that equation (37) does not
depend on the particular choice of F− (see [12]). Further-
more, if F is nonsingular, then (37) and (38) are immediately
satisfied.
Lemma 1: the equation

F�(x)Z(x)F (x) = −F (x) , (39)

with unknown Z : R
n → R

n×n, is consistent (i.e., at least
one such Z exists) if and only if (37) is satisfied.

Proof: Equation (39) is a special case of the linear
matrix equation

AXB = C , (40)

where X is the unknown. According to [12, Theorem 2.3.2],
equation (40) is consistent if and only if

AA−CB−B = C . (41)

By matching the terms in (39) and (40) we get

A = F� , X = Z , B = F and C = −F .

By substituting these in (41) we obtain

−F�(F�)−FF−F = −F

⇔ F�(F−)�F = F

(recall that FF−F = F and that a possible generalized
inverse of F� is (F−)�).
Lemma 2: Equations (39) and (38) imply that

F�Zg = −g . (42)
Proof: Equation (38) implies the existence of a mapping

β : R
n → R

n×m such that

g(x) = F (x)β(x) .

On the other hand, equation (39) implies that

F�ZFβ = −Fβ

for any β. Combining the last two equations yields (42).
Proposition 5: Consider a system Σ satisfying Assump-

tion 2 and define

Z(x) := −(F−)�(x)F (x)F−(x) . (43)

The system

Σj :

⎧⎨
⎩

ẋ = F (x)∇H(x) + g(x)u
yj = g�(x)Z(x)F (x)∇H(x) +

+ g�(x)Z(x)g(x)u
(44)

is cyclo-passive with storage function H .
Proof: The proof is established verifying the conditions

of Theorem 2. Notice that for system (44) we have

j = g�Zg (45)

and
hj = g�ZF∇H . (46)

We will show that there exists functions l and w such
that (30) is satisfied. Because of (37) and Lemma 1, equa-
tion (39) is consistent. Under Assumption 2, (43) is a par-
ticular positive semidefinite solution. Equation (39) implies
that

∇H�F�ZF∇H = −∇H�F∇H .

Given Z compute Y : R
n → R

n×n as

Y �Y =
Z� + Z

2
, (47)

which can always be obtained since (Z+Z�) ≥ 0. It is then
easy to see that

l := Y F∇H, (48)

satisfies (30a). Furthermore,

w = Y g . (49)

satisfies

w�w = g�
Z� + Z

2
g =

1

2
(j� + j) .

Substituting l and w into (30b) one obtains

hj = g�∇H + 2g�Y �Y F∇H

= g�∇H + g�(Z� + Z)F∇H

= g�∇H − g�∇H + g�ZF∇H

= g�ZF∇H ,

where (47) is used to obtain the second identity, while (39)
and Lemma 2 are invoked in the third one.
Remark 3: When F is nonsingular, the new cyclo-passive

output yj coincides with the power-shaping output of [11].
It is shown in [13] that the generation of the new output, for
a class of electrical and electromechanical systems, is tan-
tamount to the application of the classical Thevenin-Norton
transformation of electrical circuits. Additional connections
with power-shaping may be found in these two papers.
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C. Basic IDA PBC is Energy-Balancing
As one might expect, in the zero-relative-degree case there

is also a connection between energy-balancing and output
and dissipation invariance.
Proposition 6: uSF ∈ PBC ∩ EB if the output and the

dissipation remain invariant. That is, if (34) holds with

yj = y
j
d

and dj = d
j
d

. (50)
Proof: By substracting (31) from (34) it is readily seen

that
Ḣa = (yj

d
)�v − (yj)�u + d

j
d
− dj , (51)

with Ha defined as in (13). Substitution of the hypothe-
sis (50) into (51) yields

Ḣa = (yj)�(v − u) .

Since u = uSF + v,

Ḣa = −(yj)�uSF . (52)

The next proposition shows that yj and dj are invariant
under BIDA control.8
Proposition 7: Consider the cyclo-passive system (43),

(44) and suppose that Assumption 2 holds. The BIDA control
given by (29) is a PBC with

h
j
d

= g�ZF∇Hd . (53)

Moreover, the controller is output and dissipation preserving.
Therefore, it is EB.

Proof: We will show first that the closed-loop

Σj
d

:

{
ẋ = F∇Hd + gv

y
j
d

= g�Z(F∇Hd + gv)
(54)

is cyclo-passive with storage function Hd. To this effect, we
will prove that there exists an ld such that (36) and (35) are
valid. Indeed, equation (39) implies that

∇H�

d F�ZF∇Hd = −∇H�

d F∇Hd ,

so
ld = Y F∇Hd ,

with Y defined as in (47), satisfies (36). Selecting w as (49)
and substituting into (35) gives

h
j
d

= g�∇Hd + g�(Z� + Z)F∇Hd

= g�∇Hd − g�∇Hd + g�ZF∇Hd

= g�ZF∇Hd . (55)

This proves our cyclo-passivity claim.
For output preservation, we will prove that

yj = y
j
d

⇔ hj + juSF = h
j
d

. (56)

Equation (45) and (29) imply that

juSF = g�ZguSF = g�ZF∇Ha.

8A similar result (using different arguments) was obtained in [13] for the
case when F is nonsingular.

Replacing in (55) yields

hj+juSF = g�ZF∇H+g�ZF∇Ha = g�ZF∇Hd . (57)

From (57) and (53) one obtains (56).
Regarding dissipation, we will prove that dj = d

j
d
, that is,

|l + wuSF + wv|2 = |ld + wv|2 . (58)

Direct substitution of the expressions of l and w gives

l + wuSF = Y F∇H + Y guSF

= Y F∇H + Y F∇Ha

= Y F∇Hd .

Since ld is equal to Y F∇Hd, we conclude (58).
Remark 4: Notice that the property of energy-balancing

for BIDA is established with respect to the definition of the
new passive output (cf. (52)), which is obviously different
from (16).

VI. CONCLUSIONS

A framework for analysis and design of PBC, based on the
principles of dissipation and output preservation, has been
derived. This framework allows to classify various PBCs
according to Table I, where the key algebraic equations9 that
define the sets are given in parenthesis.

Dissipation Output
uSF ∈ EB

(y�uSF = −∇H�
a f ) ⇐⇒ Preserved & Preserved

uSF ∈ BIDA
(guSF = (J − R)∇Ha) =⇒ ∇H�

d
R∇Hd & g�∇Hd

if, in addition
g�∇Ha = 0

or =⇒ Preserved & Preserved
j = g�Zg

uSF ∈ IDA
(guSF = =⇒ ∇H�

d
Rd∇Hd & g�∇Hd

−f + (Jd − Rd)∇Hd)

TABLE I
CLASSIFYING DIFFERENT PBCS ACCORDING TO THEIR DISSIPATION

AND OUTPUT PRESERVATION PROPERTIES.

The equivalence between output and dissipation preserva-
tion and the important property of EB has been established.
In this regard, we identified zero-relative-degree outputs that
are invariant under BIDA control, rendering it EB.

The properties of output and dissipation preservation are
also important in dynamic PBC, such as Control by Inter-
connection (CbI). CbI is output and dissipation preserving
by construction (see Fig. 2 and [6] for details). We hope
then that the results presented here will provide a means to
extend the work done in [6], where the relationships among
CbI and different PBCs are studied (see also [14]).

9If the energy functions are seen as unknown these equations are, of
course, partial differential equations.
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Fig. 2. The CbI scheme.
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