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Abstract— The robustness properties of integral sliding mode
controllers are studied. This note shows how to select the
projection matrix in such a way that the euclidean norm of
the resulting perturbation is minimal. It is also shown that
when the minimum is attained, the resulting perturbation is
not amplified. This selection is particularly useful if integral
sliding mode control is to be combined with other methods
to further robustify against unmatched perturbations. H∞ is
taken as a special case. Simulations support the general analysis
and show the effectiveness of this particular combination.

I. INTRODUCTION

Sliding mode control [1] is a robust technique, well

known for its ability to withstand external disturbances and

model uncertainties satisfying the matching condition, that is,

perturbations that enter the state equation at the same point

as the control input (e.g. the case of completely actuated sys-

tems). Sliding mode control (SMC) has other advantages as

well, like ease of implementation and reduction in the order

of the state equation. The latter property clearly simplifies

the control design problem.

Roughly speaking, the conventional SMC design method-

ology comprises two steps: first design a sliding manifold

such that the system’s motion along the manifold meets

the specified performance; second, design a (discontinuous)

control law, such that the system’s state is driven towards

the manifold and stays there for all future time, regardless

of disturbances or uncertainties. The resulting controller,

although robust against matched perturbations, has some

disadvantages. Among them we have: the need to measure

the whole state; the lack of robustness against unmatched

perturbations; and the reaching phase, i.e. an initial period

of time in which the system has not yet reached the sliding

manifold and it is sensitive, even to perturbations satisfying

the matching condition.

Several strategies have been proposed to solve these

problems. See for example [2], [3], [4], [5], [6] where the

need to measure the whole state is relaxed. To address the

issue of robustness against unmatched perturbations the main

strategy has been the combination of SMC with other robust

techniques, e.g. [7], [8], [9].

In order to solve the reaching phase problem, an integral
sliding manifold was proposed [10], [11]. The basic idea is

to define the control law as the sum of a continuous nominal

control and a discontinuous control. The nominal control
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is responsible for the performance of the nominal system,

i.e. without perturbations; and the discontinuous control is

used to reject the perturbations. Finally, an integral term is

included in the sliding manifold. The integral term allows to

define the manifold in such a way that the system trajectories

start in the manifold right at the beginning of the process.

The later means that the closed-loop system is robust since

the first time instant.

A. Motivation

To solve the problems of the reaching phase and of the

robustness against unmatched perturbations simultaneously

(e.g. in the case of sub-actuated systems), the main idea

–as in the conventional sliding mode case– has been the

combination of integral sliding mode control and other robust

techniques. The particular combination depends of course

on the specific nature of each problem, and each particular

combination has a set of details that needs to be properly

addressed. In the case of multi-model uncertain systems [12],

[13] a multi-model decomposition becomes the essential

problem; in the case of nonlinear systems with unknown

unmatched uncertainties [14] Lyapunov’s direct method be-

comes a key feature; if integral sliding mode control is to be

combined with LMI based control techniques, the selection

of the equivalent matched dynamics would be the main issue.

For systems with time delay the essential problem is that the

nominal control should contain a delayed component [15].

In all of the above mentioned cases the selection of the

projection matrix plays a key role in the design of the sliding

manifold. In this note we address the need for a universal

choice of such matrix.

B. Main Contribution

In this work we show the following:

• At an integral sliding mode, the discontinuous control

completely compensates the matched perturbations, but

the unmatched ones are replaced by another (which we

shall call equivalent) disturbance.

• There is a set of projection matrices for which the norm

of the equivalent disturbance is minimal.

• For any projection matrix in this set, the gain of the

discontinuous action is also minimal and the equivalent

disturbance equals the unmatched one, i.e. there is no

amplification of the unmatched disturbance.

All the above means that an integral sliding mode controller,

if improperly designed, while eliminating the matched pertur-

bations, could lead to amplification of the unmatched ones.

The main results are general and can be applied whenever

ISMC is to be combined with other techniques to robustify
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against unmatched disturbances. In this note H∞ control is

taken as a specific case. Simulations support the validity

of the analysis developed and show that the performance

of an H∞ controller can be increased by this particular

combination.

C. Paper’s Structure

In the next section we present a short review of ISMC and

state the problem formally. In section III the problem stated

is solved and different interpretations are given to the results.

In section IV we analyze the combination of ISM with H∞

control. The conclusions are in section V.

II. PROBLEM STATEMENT

A. Preliminaries, ISMC

Consider a nonlinear system of the form

ẋ = f(x, t) + Bu(x, t) + φ(x, t), (1)

where x ∈ R
n is the state, t ∈ R represents time, u(x, t) ∈

R
m is the control action and φ(x, t) is a perturbation due to

model uncertainties or external disturbances. The following

assumptions are made:

Assumption 1: rankB = m.

Assumption 2: The actual value of φ(x, t) is of course

unknown, but it is bounded by a known function φ̄(x, t) ∈
L∞, i.e. ‖φ(x, t)‖ ≤ φ̄(x, t) for all x and t.

In the ISMC approach, a law of the form

u(x, t) = u0(x, t) + u1(x, t)

is proposed. The nominal control u0(x, t) is responsible

for the performance of the nominal system; u1(x, t) is a

discontinuous control action that rejects the perturbations by

ensuring the sliding motion. The sliding manifold is defined

by the set {x | s(x, t) = 0}, with

s(x, t) = G
[
x(t) − x(t0) −

∫ t

t0

(
f(x, τ) + Bu0(x, τ)

)
dτ

]
.

(2)

G ∈ R
m×n is a projection matrix which must satisfy:

Assumption 3: The matrix product GB is invertible.

The term

x(t0) +

∫ t

t0

(
f(x, τ) + Bu0(x, τ)

)
dτ

in (2) can be thought as a trajectory of the system in the

absence of perturbations and in the presence of the nominal

control u0, that is, as a nominal trajectory for a given initial

condition x(t0). With this remark in mind, s(x, t) can be

considered a penalizing factor of the difference between

the actual and the nominal trajectories, projected along G
(hence the name projection matrix, not to be confused with

a projection operator). Notice that at t = t0, s(x, t) = 0, so

the system always starts at the sliding manifold.

The discontinuous control u1 is usually selected as

u1(x, t) = −ρ(x, t)
(GB)T s(x, t)

‖(GB)T s(x, t)‖
, (3)

where ρ(x, t) is a gain high enough to enforce the sliding

motion. To simplify notation we will omit some of the

functions’ arguments from now on.

B. Analysis of the Unmatched Perturbation

Before we analyse the effect of the unmatched perturbation

it is convenient to introduce the following proposition

Proposition 1: For any matrix B ∈ �n×m satisfying

Assumption 1, the identity

In = BB+ + B⊥B⊥+

holds, where B+ is understood as the left inverse of B, that

is B+ = (BT B)−1BT and the columns of B⊥ ∈ R
n×(n−m)

span the null space of BT .

Proof: Consider a matrix

P =

[
B+

B⊥+

]
.

This matrix is clearly non-singular since it’s inverse is given

by P−1 =
[
B B⊥

]
, that is

P · P−1 =

[
B+B 0

0 B⊥+B⊥

]
=

[
Im 0
0 In−m

]
.

By reversing the order of the operands we get P−1 · P =
BB+ + B⊥B⊥+ = In.

Now we can project the perturbation φ into the matched

and unmatched spaces

φ = φm + φu, φm � BB+φ, φu � B⊥B⊥+φ,

where φm and φu are the components that belong to the

matched and unmatched spaces respectively.

To determine the motion equations at the sliding manifold

we use the equivalent control method [1]. The derivative of

s along time is

ṡ = G
[
f + B(u0 + u1) + BB+φ + B⊥B⊥+φ

]
−

− G [f + Bu0]

= GB(u1 + B+φ) + Gφu.

The equivalent control is obtained by solving the equation

ṡ = 0 for u1eq

u1eq = −B+φ − (GB)−1Gφu. (4)

Remark 1: In the majority of the papers dealing with

SMC, perturbations are assumed to be matched and the term

on the far right is usually ignored.

By substituting u1eq for u1 in (1) we obtain the sliding

dynamics

ẋeq = f + B(u0 − B+φ − (GB)−1Gφu) + (5)

+ BB+φ + B⊥B⊥+φ

= f + Bu0 +
[
I − B(GB)−1G

]
φu. (6)

From the last equation we can draw several conclusions.

First, the dynamics at the sliding manifold do not contain

the matched perturbation: it has been successfully rejected.

Second, with respect to conventional SMC, we have gained

some extra degrees of freedom. We can use u0 to stabilize the
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nominal system and to treat the unmatched perturbation. The

projection matrix G can now be considered a free parameter.

Third, the order of the equivalent dynamics is equal to that

of the original system, that is, there is no order reduction.

This is the “price” we pay in return for the extra degrees

of freedom and the elimination of the reaching phase. And

fourth, the unmatched perturbation is now multiplied by a

matrix

Γ �
[
I − B(GB)−1G

]
.

Another way to look at this, is that we have traded the

original perturbation φm + φu, for a new one: φeq � Γφu.

C. Specific Questions

Matrix Γ is the main concern of this note. We would like

to pose two specific questions regarding Γ:

1) Is there a G∗, such that norm of the equivalent pertur-

bation φeq is minimal?

2) Does matrix Γ amplify the unmatched perturbation?

i.e. is the norm of φeq greater than the norm of φu?

These questions make sense whenever we are considering

unmatched perturbations and u0 is to be designed with

robustness against unmatched uncertainty in mind.

III. MAIN RESULTS

In this section we answer the questions formulated in the

problem statement and make some comments on the answers.

Proposition 2: BT is a matrix which minimizes the norm

of φeq, i.e.

G∗ = BT = arg min
G∈Rm×n

∥∥∥[
I − B (GB)

−1
G

]
φu

∥∥∥
2

(7)

Proof: Notice first that∥∥∥[
I − B (GB)

−1
G

]
φu

∥∥∥
2

= ‖φu − Bϕ‖2

where ϕ = (GB)
−1

Gφu. Thus, problem (7) can be rewritten

in the form:

ϕ∗ = arg min
ϕ∈�m

‖φu − Bϕ‖2 ,

which, according to the Projection theorem [16, p. 51] has

ϕ∗ = B+φu as a solution. Making G = BT we will have:

ϕ =
(
BT B

)−1
BT φu = B+φu = ϕ∗

which implies (7).

Notice that for G = B+ we also have ϕ = B+φu, so B+

also minimizes φeq.

Proposition 3: For a minimizing G∗, the unmatched per-

turbation φeq is not amplified, i.e. for m < n the following

identity holds:

‖Γ∗‖ = 1,

where Γ∗ = I − B (B+B)
−1

B+ = I − BB+.

Proof: Notice first that

Γ∗T Γ∗ =
[
I − BB+

] [
I − BB+

]
= I − BB+ − BB+ + BB+BB+

= I − BB+ = Γ∗,

which means that Γ∗ is a symmetric matrix and therefore all

the eigen-values are real. Suppose that v is an eigen-vector

associated to any eigen-value λ of Γ∗, that is,

Γ∗v = λv ⇒ vT Γ∗T Γ∗v = λ2‖v‖2. (8)

But, since Γ∗T Γ∗ = Γ∗ we have

vT Γ∗T Γ∗v = vT Γ∗v = λ‖v‖2. (9)

From (8) and (9), it is clear that the eigen-values of Γ must

satisfy λ2 = λ. The last equation has two solutions, λ = 0
and λ = 1.

Since rank(BB+) < n, the rank of I − BB+ cannot be

zero. This means that Γ∗ must have at least one eigen-value

different from zero, that is, the maximum eigen-value is one.

The last statement implies that ‖Γ∗‖ = 1.

A possible interpretation of the previous theorems is that

in order to avoid amplification, we should only penalize

the difference between the actual and nominal trajectories,

projected into the matched space. Notice that for G =
B+ the equivalent control (4) becomes u1eq = −B+φ,

so, it should only contain the matched perturbations: any

attempt to compensate the unmatched perturbations with the

discontinuous control would only make matters worst.

The selection G = B+ has other advantages. First, the

discontinuous control (3) is simplified to

u1 = −ρ
s

‖s‖
.

Second, the gain ρ can be reduced (and as a consequence

the amplitude of the chattering can be reduced). Consider

the candidate Lyapunov function V = ‖s‖2/2. At G = B+

the derivative of s is

ṡ = −ρ
s

‖s‖
+ B+φ,

and the derivative of V is

V̇ = sT

(
−ρ

s

‖s‖
+ B+φ

)
≤ −‖s‖(ρ − ‖B+φ‖) (10)

In order to guarantee the sliding motion the discontinuous

action only has to major the matched disturbance. In the

general case, the derivative of the Lyapunov function is

V̇ = sT

(
GB

(
−ρ

(GB)T s

‖(GB)T s‖
+ B+φ

)
+ Gφu

)

≤ −‖(GB)T s‖(ρ − ‖B+φ − (GB)−1Gφu‖) (11)

So it is reasonable to select G = B+.

Remark 2: Since φu = B⊥B⊥+φ, at G = B+ the

product Gφu equals zero and we have φeq = φu. The system

dynamics at the sliding manifold then becomes

ẋeq = f + Bu0 + φu. (12)

IV. EXAMPLE: ISM AND H∞ CONTROL

In this section we analyze the specific combination of

ISMC and another robust method. The main goal of this

section is to support the previous analysis and propositions 2

and 3. For simplicity we have chosen a linear technique: H∞

control.
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A. Background, H∞ control

Within the classical framework, when the full state is

available the plants under consideration have the form

ẋ = Ax + Bww + Bu (13a)

z = Cx + Du, z ∈ �n+m (13b)

where z is an artificial penalty variable, matrices C and D
are of appropriate dimension and establish a compromise

between the cost associated to the state and the cost of the

control used to keep the state within some bounds. The goal

is to minimize the H∞ norm of the transfer matrix Tzw that

goes from w to z.

The following assumption is typical:

Assumption 4: (A,B) is stabilizable, (C,A) is detectable

and DT
[
C D

]
=

[
0 I

]
.

The first part of assumption 4 is obvious and the second

guaranties the boundedness of the state. The last part means

that z has no cross weighting between the state and control,

and that the control weight matrix is the identity. The latter

can be relaxed by a suitable coordinate transformation.

The following theorem (given without proof) is a standard

result of H∞ control [17].

Theorem 1 (Doyle et al.): Given assumption 4, there exist

a controller satisfying

‖Tzw‖∞ < γ

iff there exists a real, symmetric, positive semi-definite

matrix X satisfying the Riccati equation

XA+AT X −X(BBT −γ−2BwBT
w)X +CT C = 0. (14)

Moreover, when this condition holds, one such controller is

u = −BT Xx. (15)

In [18], [19] it is shown that the H∞ norm in the

frequency domain and the (truncated) L2 induced norm of a

linear system in the time domain are equivalent, i.e., if the

conditions of Theorem 1 are satisfied, then∫ T

t0

‖z‖2dτ ≤ γ2

∫ T

t0

‖w‖2dτ (16)

holds for all T ≥ t0. This equivalence allows to understand

the H∞ problem in terms of disturbance attenuation, to

generalize the H∞ control objective to nonlinear systems

and to restate the H∞ control problem in the following

terms: minimize the system’s performance index, where the

performance index γ, is understood as a truncated L2 gain.

B. Proposed Methodology

The basic idea is to use an ISMC to reject the matched

perturbation and design the nominal control using H∞

techniques to attenuate the unmatched one. Suppose that a

control is to be designed for system (13). In terms of (1)

we have f(x, t) = Ax and φ = Bww. According to (12),

the system’s dynamics at the sliding manifold is ẋ = Ax +
B⊥B⊥+Bww + Bu0, where φu = B⊥B⊥+Bww was used

to derive the previous equation. Notice that the discontinuous

control u1 is already fixed, so we need to replace u by u0

in the definition of the penalty variable z, that is

z0 = Cx + Du0.

The problem now becomes that of finding a minimum γ and

a semi-definite matrix X that satisfies (14), but with Bw

substituted by B⊥B⊥+Bw.

The control u1 is used to keep the state within some

bounds and the cost of it should be taken into account

if a comparison with the standard H∞ control strategy is

to be made, in other words: for comparison purposes the

original definition of z should be used. Whether or not the

discontinuous control u1 improves the over all performance

index is not an easy question to answer, for it depends mainly

on the weight C assigned to the state. We can however,

make a (rather informal) remark: notice that by orthogonality

‖B⊥B⊥+Bww‖2 = ‖Bww‖2 − ‖BB+Bww‖2. Since the

squared norm of the unmatched perturbation is not bigger

than the original one, we should expect a better performance

index if the weight given to the state is “high-enough”.

We summarize the proposed methodology in the following

algorithm:

1) Solve the Riccati equation

XA+AT X −X
(
BBT − γ−2B̄wB̄T

w

)
X +CT C = 0,

(17)

where B̄w � B⊥B⊥+Bw.

2) Set the sliding manifold as

s = B+

[
x(t) − x(t0) −

∫ t

t0

(A − BBT X)x(τ)dτ

]

3) and the control as

u = −BT Xx − ρ
s

‖s‖
, ρ > ‖B+Bww‖.

C. Numerical Example

Consider the following LTI system:

⎡
⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

−24 −50 −35 −10

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎦ + (18)

+

⎡
⎢⎢⎣

0 0
0 0
0 1
1 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
Bw

[
w1

w2

]
+

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦

︸︷︷︸
B

u. (19)

We define the error variable as

z0 =

[
5I4

0

]
︸ ︷︷ ︸

C

x +

[
0

1

]
︸︷︷︸

D

u0
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1) H∞ control alone: Equation (14) has

X =

⎡
⎢⎢⎣

116.27 200.05 120.14 7.61
131.54 350.85 276.52 19.21
−0.39 95.41 208.05 16.07
−5.04 −1.17 13.66 2.62

⎤
⎥⎥⎦

as a solution when γ = 7.1. The resulting controller is then,

u = −BT X∞x = −
[
−5.04 −1.17 13.66 2.62

]
x

2) ISMC plus H∞: The disturbances are first decomposed

as

Bww =

⎡
⎢⎢⎣

0 0
0 0
0 0
1 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
BB+Bw

w +

⎡
⎢⎢⎣

0 0
0 0
0 1
0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
B⊥B⊥+Bw

w.

The first part is matched and will be eliminated by the

discontinuous control u1; the second is unmatched and will

be treated using the continuous control u0, designed using

the H∞ technique.

The solution to (17) is given by

X =

⎡
⎢⎢⎣

24.77 −36.36 −60.69 −8.76
−8.37 −89.89 −183.66 −24.26
81.03 159.07 93.54 1.83
5.15 10.16 5.85 1.53

⎤
⎥⎥⎦ ,

and γ = 5.6 . The nominal control is

u0 = −BT X∞x = −
[
5.15 10.16 5.85 1.53

]
x

and the sliding manifold is

s(x, t) = B+

[
x(t) − x(t0) −

∫ t

t0

(Ax + Bu0)dτ

]
.

D. Simulation results

Three simulations were carried out. In all cases the system

was perturbed by the signal

w = sin(πt)
[
1 −1

]T
(20)

and the initial conditions were set at the origin. The first

simulation was made using the H∞ controller. The second,

using the combination ‘ISMC plus H∞’, but with G set

different to B+. To illustrate our point, a rather extreme case

was used

G = 0.5B+ + 10

3∑
i=1

B⊥+
i =

[
−10 −10 10 0.5

]

where B⊥+
i was taken as the ith row of B⊥+. The third

simulation was made using the optimal value G = B+. The

system’s states are shown in Fig. 1.

In the second simulation the gain ρ needed to enforce

the sliding mode was obtained using (11) and was set to

35. In the last simulation it was obtained using (10) and

was set to 1.5. In both cases the discontinuous control was

approximated by

u1 = −35
s

|s| + 0.0002
and u1 = −1.5

s

|s| + 0.0002

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0 2 4 6 8 10

-1

0

1

0 2 4 6 8 10

x
1

x
2

x
3

x
4

H∞ alone
H∞ + ISM (G �= B+)
H∞ + ISM (G = B+)

Fig. 1. System’s states. Simulation results for the H∞ controller (dashed-
line) and the “ISM plus H∞” controller for two cases: G �= B+ (dotted-
line) and G = B+ (solid-line)
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Fig. 2. High frequency controls. Equivalent controls (upper) for G �= B+

(dotted) and G �= B+ (solid). Actual controls (lower) u1 = −35s/(|s| +
0.0002) for G �= B+ (dotted) and u1 = −1.5s/(|s| + 0.0002) for G =
B+ (solid).

respectively. As shown in Fig. 2, these controls follow closely

the equivalent controls obtained in (4). It can be seen, that

when the matrix G achieving the minimal norm of the

equivalent perturbation is not used, the control acts in the

opposite direction, i.e. it’s effect is counter effective.

For comparison purposes, we have in Fig. 3 a plot of

‖z‖L2
/‖w‖L2

for each controller. When G is selected im-

properly, the value is increased due to the amplification of

φu. When G is selected properly, the value is lower than the

one obtained by H∞ alone.

V. CONCLUSIONS

In this note we analyze the effects that the projection

matrix have on the resulting (equivalent) perturbation. In the

presence of unmatched disturbances the projection matrix
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of an ISM controller should be selected carefully, for the

resulting controller could amplify them. Two propositions

provide a way for selecting the projection matrix correctly.

The proposed parameters ensure that the effect of the un-

matched disturbance will not be amplified by the discontin-

uous control. It is also shown that the discontinuous control

can not attenuate the unmatched disturbances.

The analysis is aimed at combining ISMC with other

robust techniques. H∞ control was selected as a specific

case, but other techniques could be used as well. Simulation

results support the analysis developed.
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