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Abstract— Recently, the Interconnection and Damping As-
signment Passivity-Based Control (IDA-PBC) methodology has
been extended to underactuated mechanical systems in implicit
port-Hamiltonian representation. The method is not restricted
to holonomic systems, does not require a positive-definite target
inertia matrix and, under general conditions, avoids the need for
solving partial differential equations. In this paper we simplify
the conditions for (local) stability and present equivalent match-
ing equations. In addition, we exploit the inherent polynomial
structure of implicit systems modeled in Euclidean space, such
that the implicit IDA-PBC problem can be cast as a linear
matrix inequality (LMI) problem. The method is applicable
to desired Hamiltonians with arbitrary polynomial order. The
proposed methodology is validated on the portal crane and the
cart-pole system.

I. INTRODUCTION

At least two different representations can be used when
modeling port-Hamiltonian systems [1]: (1) the implicit
representation, where system models are obtained by aggre-
gating simpler subsystems and the dynamics are described
by differential-algebraic equations with the interconnections
expressed as algebraic constraints, and (2), the explicit rep-
resentation, where the interconnections are simplified and
the system is handled as a whole. In the latter, ordinary
differential equations represent the dynamics. In the former
implicit mechanical framework, constraints may be inter-
preted, e.g., as interconnections (joints) between rigid body
(links) elements.

In this context, the Interconnection and Damping Assign-
ment Passivity-Based Control (IDA-PBC) has been inten-
sively studied on explicit systems, capturing a wide range
of applications, see e.g. [2], [3], [4], [5], [6]. In contrast,
only few research has been devoted to IDA-PBC in implicit
systems. The first work started with A. Macchelli [7], where
a general IDA-PBC approach is introduced for implicit
port-Hamiltonian systems, with application focused on dis-
cretized infinite-dimensional systems. Respective conditions
are stated in image and kernel Dirac representations with
linear maps. Later, the authors of [8] take a different per-
spective. They focus on underactuated mechanical systems
(UMS)s with a representation equivalent to a Dirac structure
given by a combination of hybrid and constrained input-
output representations, see [9]. Their algorithm does not
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modify the interconnection and dissipation matrix, but, for a
class of holonomic systems, is able to reduce the matching
conditions to a simple quadratic programming problem.

Only recently, Cieza and Reger [10] have introduced a
total energy shaping IDA-PBC for UMSs in implicit port-
Hamiltonian representation. The general method is not re-
stricted to holonomic systems, does not require a positive
definite target inertia matrix, and under certain conditions
(holonomy of the constraints) can reduce the kinetic and
potential partial differential equations to algebraic equations.
Nonetheless, among the main restrictions, it requires a con-
stant (closed-loop) target inertia matrix, a specific form for
the desired potential energy and, depending on the system,
solving their algebraic equations may still turn out to be a
difficult task.

On the other hand, the celebrated book of Boyd et al. [11]
has laid open the wide range of control problems that can be
stated as linear matrix inequalities (LMI)s. Most of the theory
was focused first on linear systems with non-linearities
modeled as uncertainty [12]. The contribution of LMIs in
nonlinear control roughly started with the sum of squares
(SOS) approach [13] and successfully led to the synthesis of
robust, optimal controllers for polynomial systems in explicit
representation [14], [15]. The design of such controllers for
UMSs is however quite recent and most results remain local
and with a small application spectrum [16], [17], [18].

In light of this, mechanical systems modeled implicitly in
Euclidean space possess a typical polynomial structure which
naturally leads to the question: Can we develop implicit
controllers for UMSs using SOS (or LMI) solvers? In this
work we answer this question affirmatively by first relaxing
the stability conditions of [10] and presenting equivalent
matching equations such that the problem is expressible in
terms of LMIs with arbitrary polynomial order in the desired
Hamiltonian, that is, in the target inertia matrix and potential
energy, extending the algorithm of [10].

The paper is structured as follows. In Section II we recall
the concepts of IDA-PBC for underactuated mechanical sys-
tems in implicit port-Hamiltonian representation. Section III
presents a relaxation of the stability conditions and equivalent
matching equations. In Section IV we discuss the parameter
selection that allows the LMI implementation. We verify our
results in Section V on two example systems: a cart-pole and
a portal crane. We draw the conclusions in Section VI.

II. BACKGROUND

Let us summarize the general formulation of the total
energy shaping IDA-PBC for UMSs in implicit port Hamil-



tonian representation as presented in [10]. Consider the
nominal system1[
ṙ
ρ̇

]
=

[
0 Inr
−Inr 0

][
∂>r H
∂>ρ H

]
+

[
0
b(r)

]
λ+

[
0
G(r)

]
u, (1a)

0 = b>(r)∂>ρ H, (1b)

H(r, ρ) = V(r) +
1

2
ρ>M−1(r)ρ,

and the desired (or target) system[
ṙ
ρ̇

]
=

[
0 J (r)

−J>(r) −W(r, ρ)

][
∂>r Hd
∂>ρ Hd

]
+

[
0

bd(r)

]
λd, (2a)

0 = b>d (r)∂>ρ Hd, (2b)

Hd(r, ρ) = Vd(r) +
1

2
ρ>M−1d (r)ρ,

where r ∈ Rnr and ρ ∈ Rnr are implicit generalized
coordinates (positions) and momenta, u ∈ Rnu is the input,
G : Rnr → Rnr×nu is the implicit full rank input matrix,
b(r)λ and bd(r)λd represent the constraint forces with b, bd :
Rnr → Rnr×nλ and λ, λd ∈ Rnλ are the implicit variables.
M, Md : Rnr → Rnr×nr are symmetric inertia matrices
with M � 0. The Hamiltonian H : Rnr × Rnr → R gives
the total energy (potential plus kinetic) and Hd is the desired
energy function. To avoid cumbersome notation, we will omit
the arguments of functions that have been previously defined.

Proposition 1 (Well posedness): Consider the implicit
system (1) and define

X := {r ∈ Rnr | rank ∆(r) = nλ} , ∆(r) := b>M−1b.

Then, for any state with r ∈ X there exists a unique
solution for λ. In addition, the constraint manifold Xc ={

(r, ρ) ∈ X × Rnr | b>∂>ρ H = 0
}

is well defined and the
DAE system (1) has differential index 1.

Proof: See [9].
In a similar way, we can define ∆d(r) := b>dM

−1
d bd, Xd :=

{r ∈ Rnr | rank ∆d(r) = nλ}, such that the target system
(2) is well defined for all r ∈ Xd.

Proposition 2 (Matching equations [10]): System (1) can
be transformed into (2) for any trajectory of r that remains
in X ∩ Xd whenever the following Kinetic (quadratic in ρ)

S⊥
(
∂>r (M−1ρ)− J>∂>r (M−1d ρ)−W1M−1d

)
ρ = 0, (3a)

Potential (independent of ρ)

S⊥
(
∂>r V − J>∂>r Vd

)
= 0 (3b)

and constraint

S⊥J>b = 0 (3c)

matching conditions are satisfied. Consequently, the uniquely
defined control law is given by

uI =
[
Im 0

]
(S>S)−1S>

(
∂>r H+ L+ J>bλd

)
, (4)

1We write ∂h
∂x

= ∂xh or
(

∂h
∂x

)>
= ∂>x h for any vector or scalar

function h(x). In is the identity matrix of size n.

where L = −J>∂>r Hd −W∂>ρ Hd, J = M−1Md, bd =
J>b, S =

[
G b

]
, S⊥ is the full rank left annihilator2 of S,

W(r, ρ) = S(r)Ku(r)S>(r) +
1

2
W1(r, ρ),

Ku(r) ∈ R(nu+nλ)×(nu+nλ), and W1 is affine in ρ.
Remark 1: The constraint (1b) is a physical property of

the system. Therefore, (2b) is only an equivalent representa-
tion of (1b). The matching condition (3c), which introduces
conservativeness, allows to solve (3a) and (3b) independently
of the solution of λd, which would otherwise increase the
problem complexity.

Remark 2: If desired, the implicit variables λ and λd can
be calculated using the hidden (or secondary) constraint
d b>∂>

ρ H
dt = ∂r

(
b>∂>ρ H

)
∂>ρ H+ b>M−1ρ̇ = 0.

Proposition 3 (Implicit stability [10]): Assume that the
conditions of Prop. 2 are satisfied and define the new domain
XI =

({
r ∈ Xd | b⊥M̄db

>
⊥ � 0,Φ = 0

}
× Rnr

)
∩Xc. Then

x? = (r?, 0) ∈ Xa =
{

(r, ρ) ∈ XI | S⊥∂>r V = 0
}

is a stable
equilibrium of closed-loop (2) for any Ku +K>u � 0 if 3

x? = arg min Vd|XI (5a)

is an isolated minimum and

0 = ρ>M−1d W1M−1d ρ
∣∣
XI
. (5b)

Furthermore, if yI := (Ku+K>u )
1
2S>M−1d ρ is a detectable

output of (2), x? is asymptotically stable.4 Here M̄d =
MM−1d M, Φ(r) :=

∫ r
0
b̄>(s)ds + c are the integrated

constraints,5 ∂rΦ ≡ b̄>(r), c is constant, b>∂>ρ H ∈ C1 and
b̄ is matrix constructed with horizontal concatenation of the
columns of b, namely bi, satisfying the integrability condition
∂rbi ≡ ∂>r bi.
Propositions 1–3 summarize the implicit IDA-PBC method-
ology. The set XI contains the region of convergence.

III. MAIN RESULTS

In this section we present simpler conditions that are
locally sufficient for those of Proposition 3. We then intro-
duce equivalent matching equations to further simplify the
analysis.

Proposition 4: Given the implicit system (1) with desired
position r? ∈

{
r ∈ X | S⊥∂>r V = 0

}
, there exist a (locally)

stabilizing control law (4) in (r?, 0) whenever:
i) Md(r

?) has full rank.
ii) Ku +K>u � 0.

iii) Md, Vd and W1 satisfy the matching conditions (3)
with (5b) and

b⊥MM−1d Mb⊥
>
∣∣∣
r=r?

� 0. (6a)

2System (1) is underactuated if rank S < nr , see [8]. Consequently, S⊥
exists, i.e., (3) plays a role, if and only if (1) is underactuated.

3Note that Hd|XI is the restriction of Hd to XI .
4We write A

1
2
>
A

1
2 = A for any square positive semidefinite matrix A.

5If all constraints are non-integrable, i.e., non-holonomic, there is no Φ
and the domain XI reduces to

({
r ∈ Xd | b⊥M̄db

>
⊥ � 0

}
× Rnr

)
∩Xc.



iv) There is some constant µ? ∈ Rnλ such that6

b̄⊥

(
∂r
(
b̄µ?
)

+
∂2Vd
∂r2

)
b̄>⊥

∣∣∣∣
r=r?

� 0 and (6b)

∂rVd(r?) + b̄(r?)µ? = 0, (6c)

with b̄⊥ the full rank left annihilator of b̄.
Proof: Define Xs1 =

{
r ∈ X | b⊥M̄db

>
⊥ � 0

}
and use[

b⊥
b>

] [
M̄db

>
⊥ b

]
=

[
b⊥M̄db

>
⊥ 0

b>M̄db
>
⊥ b>b

]
,

then
[
M̄db

>
⊥ b

]
has full rank for all r ∈ Xs1. If Md(r

?)
has full rank, there also exists a neighborhood Xs2 of r?

where Md has full rank. Now, from the identity[
b⊥
b>

]
M̄−1d

[
M̄db

>
⊥ b

]
=

[
b⊥b
>
⊥ b⊥M̄db

0 ∆d

]
,

we note that ∆d has full rank for all r ∈ Xs1∩Xs2. Therefore,
(Xs1∩Xs2) ⊂ XI , i.e., (r?, 0) ∈ XI . Using Prop. 2 and 3, it
remains to show that, locally, (r?, 0) = arg min Hd|XI . For
this, assume that at least one constraint in (1b) is integrable
and define the Lagrangian function Ld(r, ρ, ν, µ) = Hd +
ν>b>M−1ρ+µ>Φ, with Lagrange multipliers µ and ν, and
constraints b>M−1ρ = 0 and Φ = 0. The necessary and
sufficient conditions, see [19], for x? to be a strict local
minimum of Hd|Xb are given by

∂>x Ld(r?, ρ?, ν?, µ?) = 0,

∂>x Ld =

[
∂>r Ld
∂>ρ Ld

]
=

[
∂>r Vd + b̄µ+ ∂>r

(
ρ>M−1bν

)
M−1bν +M−1d ρ

]
.

y>ρM−1d yρ > 0, y>ρM−1b? = 0, and (7a)

y>r

(
∂2Vd
∂r2

+ ∂r b̄µ
?

)∣∣∣∣
r=r?

yr > 0, y>r b̄(r
?) = 0. (7b)

From ∂>x Ld
∣∣
x=x?

= 0 and the full rank condition of ∆d we
obtain ν? = 0 and (6c). Then we employ Finsler’s Lemma
on (7a) and (7b) which results in (6a) and (6b), respectively.
In case of non-holonomic systems, b̄ and µ do no exist;
consequently, b̄⊥ can be selected as Inr , and b̄µ as 0.

Proposition 4 simplifies Prop. 3 in the following way:
• It is not required to search for sets Xd or XI to guarantee

the existence of a control law.
• Instead of searching for x? = arg min Hd|XI in the

whole XI , we only need to search locally (in r?) for
(6) with full rank Md

The implicit IDA-PBC stated in Prop. 4 does not require
Md(r) to be strictly positive definite, only nonsingular
(Md must be invertible) with b⊥M̄db

>
⊥ � 0. This weaker

condition allows, e.g., the existence of a local controller
for the cart-pole with Md constant, which otherwise would
be impossible by the condition Md � 0, see [10]. How-
ever, analyzing the elements of Md, such that it fulfills
b⊥M̄db

>
⊥ � 0 and the matching conditions (3), is not always

easy (even for constantMd) due to the matrix inversion. The
following proposition aims at simplifying this problem.

6If all constraints (1b) are non integrable, then (6b) reduces to ∂2Vd
∂r2

� 0
and (6c) is equivalent to ∂rVd(r?) = 0.

Proposition 5 (Equivalent Matching): The matching con-
ditions (3) are equivalent to

kb⊥
(
MM−1d ∂>r (M−1ρ)−W̄1−∂>r (M−1d ρ)

)
ρ = 0 (8a)

kb⊥
(
MM−1d ∂>r V − ∂>r Vd

)
= 0 (8b)

kb⊥MM−1d S = 0 (8c)

for all (r, ρ) ∈ (X ∩ Xd) × Rnr , where W̄1 =
MM−1d W1M−1d , b⊥ is the full rank left annihilator of b
and k(r) ∈ R(nr−nu−nλ)×nr is a full rank matrix.

Proof: Using (8c) and the full rank condition on k, we
obtain

k(r)b⊥ = k̄(r)S⊥MdM−1 (9)

for a square full rank matrix k̄(r). Replacing (9) in (8) and
multiplying by k̄−1 yields (3). The necessity proof follows
a similar procedure but with (3c).
Inspection of the equivalent matching equations (8) and the
conditions (6) of Prop. 4 shows that only M−1d is present
(Md has been removed), avoiding in this way the inversion
problem at the cost of introducing the new unknown matrix
k(r). This allow us to state the problem as an LMI problem,
shown in Section IV-A.

IV. HEURISTIC SOLUTIONS

A. Implicit IDA-PBC using LMI solvers

Assume W1, M−1d and Vd are given by linear combina-
tions of known basis functions. Then, using Prop. 4 we can
express the matching conditions (3) and (6c) as F1(x, γ) = 0
and express (6a)–(6b) as F0(x?, γ) � 0, where x = (r, ρ),
γ is a vector of the unknown coefficients, F1 is a nonlinear
function in x and γ, and F0 is affine in γ.

Typically, implicit mechanical systems that are modeled in
Euclidean space have constant M and polynomial V and S,
see [10], [8].7 Therefore, instead of searching for k andM−1d
in the equivalent matching conditions (8) simultaneously, we
fix k and search for polynomial Ni, M−1d and Vd with a
specific structure in W1 parametrized by Ni, see Section
IV-C. Consequently, we can express (8) as F̄1(x, γ) = 0
where F̄1 is polynomial in x and affine in γ. Extracting the
coefficients of F̄1(x, γ) = 0, we can build a matrix F̄2(γ)
which, together with F0(x?, γ) � 0, can be solved with LMI
solvers.

The Algorithm 1 shows our solution for the Implicit IDA-
PBC with LMI solvers.

B. Selection of k

Case 1: Define b>⊥ :=
[
S>⊥ Z

]>
with Z any matrix

complement to S>⊥ for a full rank left annihilator b⊥. Then,
consider k =

[
Inr−nλ−nu 0

]
. It is straightforward to see

that the constraint matching equation (3c) is equivalent to
J>b = Sk1 for some k1(r) ∈ R(nλ+nu)×nλ . In contrast,
(8c) with this k is equivalent to J>b = Sk1 and J>G = Sk2
for some k1(r) ∈ R(nλ+nu)×nλ and k2(r) ∈ R(nλ+nu)×nu ,
which is more restrictive. See Section V-A.

7These models are not derived from a polynomial approximation.



Result: Implicit IDA-PBC Controller
Analyze the polynomial order of M, V and S;
Select polynomial order for Md, Vd and Ni;
Calculate S⊥, b⊥ and set k as Case 1;
Select r?;
Solve Matching conditions (8b), (8c) and (11) with (6);
if (Solver converges) and (Md(r

?) has full rank) then
Calculate u;

else
Change order of M−1d , Vd, Ni or selection of k;
Solve again conditions with the SDP solver;

end
Algorithm 1: Solution of Implicit IDA-PBC with LMIs.

Case 2: In some systems, the selection of k presented
in Case 1 is not sufficient to satisfy the control objective,
for instance the upright position of the cart-pole. Here, we
propose to search for a more general structure of k(r) that
in the beginning only fulfills (8c). In this way, we multiply
(9) on the right by

[
b b>⊥

]
resulting in (3c) and

k̄−1k = S⊥J>b>⊥
(
b⊥b
>
⊥
)−1

. (10)

In the application, we first search symbolically for some M̃d

that meets (3c) and then calculate k̄−1k. Since multiplying
(8) on the left by any square full rank matrix does no affect
the results, we can simply use k̄−1k instead of k.

C. Structure Selection for W1

Let us consider

W1 =MdM−1
n∑
i=1

NiM−1ρe>i Md

with Ni(r) = −N>i (r) ∈ Rnr×nr , and ei ∈ Rnλ unitary
column vectors, then we fulfill (5b) and rewrite (8a) as

n∑
i=1

b⊥ (aij1 + aij2 + aij3) b>⊥ = 0, (11)

aij1 = v>j kb⊥MM−1d ei∂ri(M), aij2 = N>i b>⊥k>vje>i M,

aij3 = v>j kb⊥eiM∂ri(M−1d )M,

where vj ∈ Rnr−nλ−m are unitary column vectors.8 Fur-
thermore, if Md is constant and S⊥∂

>
r (M−1ρ) = 0, then

(11) can be satisfied for arbitrary skew symmetric matrices
Ni(r) ∈ R(nλ+m)×(nλ+m) with

Ni =MM−1d SNiS
>M−1d M. (12)

V. SIMULATIONS

In the following examples we use the previous results
to find stabilizing controllers for the portal crane and the
cart-pole systems. The algorithm is processed in Matlab
with SOSTOOLS and SDPT3. SOSTOOLS is a Matlab
toolbox specialized on the SOS method [20]. Even though,
here we do not directly use SOS, this toolbox provides a

8Note that the kinetic matching equation (11) is independent of ρ.

simple environment to work with polynomial matrices and
equalities (obtaining F̄2(γ)). In addition, to guarantee strict
inequalities in the Semidefinite Programming (SDP) solver,
we add 10−5Inr−nλ in the right hand side of (6b) and (6a).
For better visibility, values presented in this paper have been
rounded to three decimals.

A. Portal Crane

Let us consider a portal crane system with massless rope
and fix distance l,9 see Fig. 1. The implicit model without
dissipation is given by (1), with Φ = 1

2

(
x2p + y2p + z2p − l2

)
,

G =
[
02×3 I2

]>
, gravity constant gr,

M =


mp 0 0 mp 0
0 mp 0 0 mp

0 0 mp 0 0
mp 0 0 mc+mp 0
0 mp 0 0 mc+mp

, r =


xp
yp
zp
x̃c
ỹc

,
and V = grmpzp, where xp, yp and zp are the Cartesian
positions of pendulum, x̃c = xc − x?c , ỹc = yc − y?c , and xc
and yc are the cart positions in a horizontal plane.

We shall determine an implicit IDA-PBC stabilizing con-
troller. For this, we select

k =

[
I2
02

]>
, b⊥ =

[
S⊥
Z>

]
, S⊥ =

[
−zp 0 xp 0 0

0 −zp yp 0 0

]
and solve the conditions of Prop. 4 in SOS with mp =

mc = l = 1, r? =
[
0 0 −l 0 0

]>
, a constant Md

and Vd a polynomial of maximum degree 2. Note that
S⊥∂

>
r (M−1ρ) = 0; therefore, we do not require to solve

(11) and Ni is parameterized by (12). The results from SOS
are: µ? = 1.17,

M−1d =


3.16 0 0 −2.69 0

0 3.16 0 0 −2.69
0 0 0.466 0 0

−2.69 0 0 2.69 0
0 −2.69 0 0 2.69

 and

Vd = 2.12(x̃2c + ỹ2c ) + 1.7(x2p + y2p + z2p) + 4.57zp + 2.87.

Figure 2 illustrates the behavior of the closed loop system
with Ku = diag(2, 2, 0), W1 = 0, xp(0) = yp(0) = xc(0) =
yc(0) = x̃c(0) = ỹc(0) = 0, zp(0) = −l , ρ(0) = 0 and
set points (represented by dotted lines) of x?c = 1 m and
y?c = 0.5 m. We omit zp in the illustration because it points

9If l is not fix, there is no constraint.

mc

xp

yp

zp

mp

xc

yc

l

u1

u2

bλ

Fig. 1. Portal Crane system.



downwards and is fully determined by Φ(r) = 0. Clearly, the
states converge to r? and the desired Hamiltonian decreases
monotonically.

−1

0
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·10−1

time (s)

Pe
nd

.P
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m
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t
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(m

) xc
x?c
yc
y?c
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0

1

2

time (s)

H
d

Fig. 2. Portal Crane: Response under x?c = 1 m and y?c = 0.5 m.

Finally, we also note that the solution obtained from
the SDP solver satisfies J b = bQ for some square full
rank matrix Q(r). As a consequence, it is also possible to
implement the output feedback law proposed in [10].

B. Cart-Pole

Now, we consider a cart-pole system with massless bar and
without friction as shown in Fig. 3. The implicit model (1)
has Φ = 1

2

(
x2p + y2p − l2

)
, potential energy V = grmpyp,

gravity constant gr, pendulum length l, x̃c = xc − x?c ,

r =

xpyp
x̃c

, M =

mp 0 mp

0 mp 0
mp 0 mc +mp

, and G =

0
0
1

.
1) Constant M−1d : Following the same procedure as in

the portal crane (k =
[
1 0

]
, S⊥ =

[
−yp xp 0

]
and Vd

a polynomial of maximum degree 2) for r? =
[
0 l 0

]>
,

we observe that the SDP solver in SOSTOOLS does not

mp

l

mc
xc

u

θ

xp

yp

Fig. 3. Cart pole system.

converge, i.e., there is no solution for the upright position
of the pendulum.10 Therefore, we use the second case for
the selection of k with b⊥ =

[
S>⊥ G

]>
and find k =[

1 a1yp
]
, a1 ∈ R. Consider mp = mc = l = 1. Numerical

experimentation then shows that the SDP solver converges
if we select a1 > 1. Picking a1 = 2, we obtain

M−1d =

 3.06 0 −0.954
0 −0.195 0

−0.954 0 0.318

 , µ? = 0.827,

Vd = 0.425x2c + 1.7xcxp + 2.24x2p + 0.544y2p − 1.92yp

+ 1.37.

Eliminating constraints (2b) and forces bd(r)λd (reduction
to explicit representation [10]), we can see that despite
Md being sign indefinite, the target mass matrix in explicit
coordinates, given by Md, is positive definite. Furthermore,
if Vd has maximum degree 2, it is possible to find an
equivalence with the PID-PBC [10].

2) Polynomial M−1d : Now, we select Vd, W1 and M−1d
polynomial functions of third, first and second order, respec-
tively, whereM−1d has xp and yp as arguments. Solving the
conditions of Prop. 4 in SOSTOOLS with (11) replaced by
(8a), yields: µ? = 1.13,

M−1d =

a2 a5 a3
a5 −0.012x2p −0.037y2p −0.246 0.024xpyp
a3 0.024xpyp a4

,
N1 =

 0 0 0.124xp
0 0 −0.124yp −0.088

−0.124xp 0.124yp + 0.088 0

,
N2 =

 0 0 −0.244yp − 0.153
0 0 0

0.244yp + 0.153 0 0

,
N3 =

 0 0 −0.001xp
0 0 0.001yp − 0.022

0.001xp 0.022− 0.001yp 0

,
a2 = 0.045x2p + 2.35y2p + 2.36yp + 2.39,

a3 = 0.005x2p − 0.78y2p − 0.787yp − 0.714,

a4 = −0.01x2p + 0.26y2p + 0.262yp + 0.238,

a5 = −0.049xpyp, and

Vd = 0.527x2c + 2.11xcxp − 0.122x2pyp + 2.93x2p

− 0.122y3p + 0.82y2p − 2.41yp + 1.71.

Figure 4 shows the behavior of the closed loop system under
two control laws: u1 calculated from Section V-B.1 with
Ku = diag(20, 0) and u2 obtained from Section V-B.2 with
Ku = diag(4, 0). We define xp = l sin θ, yp = l sin θ and
consider initial conditions θ(0) = 30deg, xc(0) = x̃c(0) = 0
m and ρ(0) = 0. Additionally, we include in 15s a set point
(represented by a dotted line) of x?c = 2m.

Since there is no optimization objective, we cannot yet
draw from Fig. 4 any conclusion related to which control law

10Using k =
[
1 0

]
it is possible to find a solution for the downward

position of the pendulum.



is better. However, selecting Md polynomial allows more
freedom in the adjustment of the algorithm, which under ad-
equate additional inequalities may, e.g., increase robustness
or the region of convergence. Finally, no equivalence with
the PID-PBC has been found in this case.

VI. CONCLUSIONS

We simplify the conditions to implement (locally) the
total energy shaping implicit IDA-PBC presented in [10].
Additionally, we introduce equivalent matching equations
which take advantage of the typical polynomial structure
of implicit port-Hamiltonian systems modeled in Euclidean
space and, under some parametrization (using an additional
matrix k), the new matching equations allow us to formulate
the problem as LMIs with a user-defined polynomial order
in the desired Hamiltonian. Thus, we extend the algorithm of
[10], solving the kinetic matching equations for a possibly
non-constant target inertia matrix, while still avoiding the
need to solve PDEs.

The polynomial equalities and LMIs are solved with
SOSTOOLS and SDPT3. Additionally, discussions for two
parametrizations of the equivalent matching equations are
also presented. The approach is shown on two standard
underactuated mechanical examples: the cart-pole and portal
crane system.

Since no performance or optimization objective for the
SDP solver has been proposed yet, our future works focus
on local optimality and increasing the region of convergece.
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