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Abstract— The output regulation problem is addressed. We
start with a linear passive system without feed-forward term
and we look for a static set-valued output feedback control
law which guarantees the regulation of the output to a desired
fixed value, even in the presence of external matched and
bounded perturbations. The multivalued control is taken as the
subdifferential of some proper, convex, lower semicontinuous
function with effective domain restricted to a closed convex set
S, yielding to a maximally monotone set-valued map. The exis-
tence and convergence of system trajectories to an equilibrium
set are established. By using the so-called Yosida approximation,
some implementation issues regarding the multivalued control
law are addressed. Finally, some examples are presented to
illustrate the robustness features in the output of the closed-
loop.

I. INTRODUCTION

The study of systems with multivalued right-hand sides
is an active area of research in the control community, its
study for modeling and analysis of processes is extensive,
see e.g. [1], [2], [3], [4], [5], [6], to name a few. Among all
of this works, maximal monotone set-valued maps yield to
a well-posed problems enjoying important features. Namely,
existence and uniqueness of solutions, continuity of solutions
with respect to initial conditions and approximation of solu-
tions through maximally monotone Lipschitz single-valued
maps (Yosida approximation); see, e.g., [2], [7], [8], [9].

On the other hand, the problem of designing a multivalued
control in order to achieve a desired response is less explored,
except for the case of sliding mode control [10] and recently
some works using maximally monotone operators such as
[9], [11], [12], [13].

The output regulation problem with a feed-forward term
Du, was treated in previous works [12] where, under some
conditions (which strongly depend on the inverse of the
matrix D) it is possible to achieve perfect output regulation
independently of the initial conditions of the system, even
in the presence of parametric and external disturbances.
Recently [13] the output regulation problem was treated
using an internal model approach. The authors consider the
design of a state feedback control law for systems of Lur’e
type with multivalued right-hand side and developed a static
and a dynamic control law which depend on both the system
parameters and the system state.

In [11] the robustness and stability issues for Lagrangian
systems with a maximally monotone set-valued control law
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were studied. The authors analyzed a control that only de-
pends on the generalized velocity of the system. It is a well-
known fact that Euler-Lagrange systems represent passive
maps with the output taken as the generalized velocity [14,
Chapter 4]. Taking advantage of this fact the authors obtain
a static output feedback for which finite-time stability of the
origin is established.

In this note, we propose the use of a static set-valued
control law (more general than the conventional signum
multifunction used in sliding-mode control) defined as the
convex subdifferential of some proper, convex and lower
semicontinuous function ϕ restricted to a closed and convex
effective domain S. The closed-loop system shows useful and
attractive features. Namely, the output is confined to S for all
time t, the set of equilibrium points is globally stable (and
globally asymptotically stable in the strict passivity case) and
the output converges in finite time.

This note is organized as follows: The following subsec-
tion introduces mathematical preliminaries and notation are
introduced. Section II establishes the robust output regulation
problem, together with the static set-valued control law
considered along this note. Some facts about existence and
uniqueness of solutions, as well as existence, uniqueness, and
stability of equilibrium points are established. In Section III
the regulation problem is solved for the case of matched
disturbances together with comments about the implementa-
tion. Some examples are presented. Finally, conclusions and
further research directions are suggested in Section IV.

A. Mathematical preliminaries and notation

A set-valued function or multifunction F : Rn → 2R
n

is
a map that associates with any w ∈ Rn a subset F(w) ⊂
Rn. The domain of F is given by DomF = {w ∈ Rn :
F(w) 6= ∅}. Related with the definition of a multifunction is
the concept of its graph,

GraphF = {(w, z) ∈ Rn × Rn : z ∈ F(w)}.

The graph is used to define the concept of monotonicity of
a multifunction in the following way: A set-valued function
F is said to be monotone if for all (w, z) ∈ GraphF and all
(w′, z′) ∈ GraphF, the relation 〈z− z′, w−w′〉 ≥ 0 is pre-
served with 〈·, ·〉 the usual scalar product on Rn. Moreover, F
is called strongly monotone if 〈z−z′, w−w′〉 ≥ α‖w−w′‖2
for some α > 0. A monotone map F is called maximally
monotone if, for every pair (ŵ, ẑ) ∈ Rn × Rn \ GraphF,
there exits (w, z) ∈ GraphF with 〈z − ẑ, w − ŵ〉 < 0 or,
in other words, if no enlargement of its graph is possible in
Rn × Rn without destroying monotonicity.



Let f : Rn → R ∪ {+∞} be a proper, convex and lower
semicontinuous (lsc) function. The subdifferential ∂f(w) of
f(·) at w ∈ Rn is defined by

∂f(w) = {ζ ∈ Rn : f(σ)− f(w) ≥ 〈ζ, σ − w〉
for all σ ∈ Rn} .

It is a well known result that the subdifferential of a proper,
convex, lsc function is a maximally monotone operator (see
e.g., [1, Prop. 3.4.1]). An important convex function used
through this note is the indicator function of a convex set
S, defined by ΨS(w) = 0 if w ∈ S and Ψ(w) = +∞
otherwise.

It is easy to see that when f(·) is equal to the indicator
function of a closed convex set S the subdifferential coin-
cides with the normal cone of the set S at the point w ∈ S,
i.e.,

∂ΨS(w) = NS(w) = {ξ ∈ Rn : 0 ≥ 〈ξ, σ − w〉
for all σ ∈ S} .

Notice that if w is in the interior of S then NS(w) = {0}.
If w /∈ S, then we adopt the convention NS(w) = ∅.

Let F be a maximally monotone set-valued map. The
Yosida approximation of F, denoted by Fλ, is a single-
valued, Lipschitz continuous, maximally monotone operator
given by

Fλ =
1

λ
(I − Jλ) , Jλ = (1 + λF )

−1
,

where Jλ is the so-called resolvent of F . See, e.g. [1, Chapter
3], [15, Chapter 12] for a detailed account of properties about
Yosida approximation.

Remark 1: As it is pointed out in [1] the Yosida approxi-
mation of a subdifferential can be obtained in the following
way. Let ∂f(w) be the subdifferential of the function f :
Rn → R at the point w. Consider the Moreau-Yosida
approximation of f ,

fε(w) = inf
ζ∈Rn

{
f(ζ) +

1

2ε
‖ζ − w‖2

}
,

where ε > 0. Then, the gradient ∇fε(w) is the Yosida
approximation of ∂f(w) [1, Th. 3.4].

Along this note, we denote the unitary open ball of Rn as
Bn.

We prove an elementary fact about solid convex cones.
Lemma 1: Let K ⊂ Rm be a convex cone with non-empty

interior, and let V ⊂ Rm be a bounded set. Then, there exists
ϑ ∈ K such that {ϑ}+ V ⊂ K.

Proof: Since K is solid, there exists a base {ξ1, . . . , ξm}
contained in K. Thus, every element of V can be written as
v =

∑m
i ξiνi. Due to the boundedness of V , there exists ν̄

such that |νi| ≤ ν̄, i = 1, . . . ,m. By setting ϑ =
∑m
i ξiν̄ ∈

K, it is clear that ϑ+ v ∈ K, since ϑ+ v =
∑m
i ξi(νi + ν̄)

and (νi + ν̄) ≥ 0.

II. PROBLEM STATEMENT

Consider the following linear system

Σ


ẋ(t) = Ax(t) +B1u(t) +B2(v + ν(t))

y(t) = Cx(t)

x(0) = x0,

where, x(t) ∈ Rn represents the system state, u(t) ∈ Rm
is the control input, y(t) ∈ Rm is the system output, the
constant term v ∈ Rm is a system parameter and A,B1, B2

and C are constant matrices of suitable dimensions. The term
ν(t) ∈ Rm accounts for an exogenous perturbation signal
which is considered bounded.

A special case to consider is when B1 = B2 (i.e., the
matched perturbation case). In this case the parameter v can
be assimilated by the control: u(t) + v can be taken as the
new control.

Some techniques, such as conventional sliding mode con-
trol, can achieve robust output regulation against parametric
and external disturbances, by using the signum multifunction
(which is the subdifferential of the absolute value function),
but we do not restrict ourselves to that case. Instead, we
consider a set-valued control law represented as the subdif-
ferential of some proper, convex, lsc function with effective
domain restricted to a convex set S.

The robust output regulation problem can be announced
as follows.

Problem: The output regulation problem consists in
regulating the output y to a desired fixed value yd, even in the
presence of an external perturbation signal ν and (possibly
unmatched) parametric uncertainty.

The class of linear systems that we consider is character-
ized by the following assumption.

Assumption 1: System Σ is passive, i.e., there exists a
symmetric positive definite matrix P such that [17]

A>P + PA ≤ 0 (1)

PB1 = C>. (2)
Special cases of passive systems to consider are the so-

called strictly passive systems, which satisfy the Lyapunov
inequality strictly, i.e.

A>P + PA+ εP ≤ 0 (3)

PB1 = C>, (4)

for some ε > 0.

A. The set-valued controller

We propose the use of the following set-valued static
control

−u(t) ∈ ∂Φ(y(t)) (5)

where Φ = ΨS + ϕ, with ΨS the indicator function of a
closed convex set S and ϕ : Rm → R is a proper, convex
and lsc function. Observe that Φ is the restriction of ϕ to S
and is proper, convex and lsc.

It is a well known result that, under the passivity assump-
tion, system Σ admits a unique solution x ∈ C0(R+;Rn)



such that ẋ ∈ L∞loc(R+;Rn) and y(t) = Cx(t) ∈ S =
Dom(∂Φ) for all time t ≥ 0, whenever y0 = Cx0 ∈ S.
See [9] and [7] for a detailed account about this fact.

With the multivalued control (5), the closed-loop system
results in

ẋ(t)−Ax(t)−B2(v + ν(t)) ∈ −B1∂Φ(y(t)) (6a)
y(t) = Cx(t) (6b)
Cx(0) = y0 ∈ S. (6c)

The closed-loop system can also be written as a hemivaria-
tional inequality of evolution [18], by using the subdifferen-
tial’s definition. Namely, multiplying both sides of (6a) by
P and applying the chain rule for subdifferentials [16, Ch.
VI, Th. 4.2.1], we have

〈−Pẋ(t) + PAx(t) +B2(v + ν(t)), σ − x(t)〉 ≤
Φ̂(σ)− Φ̂(x(t)), ∀ σ ∈ Rn.

Moreover, system (6) is related to complementarity systems
[19] and projected dynamical systems [20] as stated in [8].

III. ROBUST OUTPUT REGULATION

In this section the robust output regulation problem is dealt
with. We start introducing Lemma 2 about reachability of the
desired output, then we prove that it is always possible to
achieve output regulation of admissible outputs even in the
presence of external matched disturbances.

A. Perfect output regulation

We starting writing the equilibrium points associated to
the nominal closed-loop system (6) as

Ax∗ +B2v ∈ B1∂Φ(Cx∗). (7)

Multiplying both sides of (7) by P and using (2) together
with the chain rule for subdifferentials, we have that solutions
of (7) are also solutions of the inclusion

P (Ax∗ +B2v) ∈ ∂Φ̂(x∗), Φ̂ = Φ ◦ C, (8)

and vice-versa. Now, notice that the linear map −PA is
monotone (in fact it is maximally monotone [1, Prop. 3.3])
then a direct use of Theorem 3.11.2 of [21] gives the
existence result for any v ∈ Rm.

Once the existence of equilibria has been established, we
introduce the set

E(v, S) =
{
x ∈ Rn : P (Ax+B2v) ∈ ∂Φ̂(x)

}
as well as the set of points which produce the desired output
yd,

C = {x ∈ Rn : Cx = yd, yd ∈ S} ⊂ Dom ∂Φ̂.

We will need an extra assumption concerning the convex
set S ⊂ Rm.

Assumption 2: The normal cone to S ⊂ Rm at yd is solid,
i.e., it has non empty interior.
The last assumption is very mild. It is clear that if we take
the set S as a polyhedron with yd as one of its vertex then

intNS(yd) 6= ∅. As we shall see later (in the proof of
Theorem 1), the condition about non emptiness of NS(yd)
is crucial in order to remove the effect of the bounded
disturbance ν.

Conditions under which we obtain x ∈ E(v, S) ∩ C are
established in the following Lemma.

Lemma 2: If for some x∗ ∈ E(v, S), the inclusion

P (Ax∗ +B2v) ∈ rint ∂Φ̂(ξ)

is satisfied for some ξ ∈ C, where rintA refers to the interior
of the set A relative to its affine hull (see e.g. [22, Sec. 6]),
then E(v, S) ⊂ C.

In words, every equilibrium is associated with the desired
output.

Proof: Let x∗ = x1 ∈ E(v, S) and define ηi :=
P (Axi + B2v) with xi ∈ E(v, S), i = 1, 2. It is easy to
see that, by the definition of ηi, the following equation is
fulfilled

sup
σ∈Dom Φ̂

{
〈η1, σ〉 − Φ̂(σ)

}
= 〈η1, x1〉 − Φ̂(x1). (9)

Since by assumption η1 ∈ rint ∂Φ̂(ξ), there exists ε > 0
such that

{η1}+
(

aff ∂Φ̂(ξ) ∩ εBn
)
⊂ ∂Φ̂(ξ),

for some ξ ∈ C. Notice that, due to ∂Φ̂(ξ) = C>∂Φ(yd)
and considering that int ∂Φ(yd) is not empty in Rm (see
Assumption 2), we have aff ∂Φ̂ = ImC>.

Equivalently, η1 satisfies the following inequality

〈η1 + ρ, σ − ξ〉 ≤ Φ̂(σ)− Φ̂(ξ),

for all σ ∈ Dom ∂Φ̂, and for all ρ ∈ ImC> ∩ εBn so that

〈η1, σ − ξ〉 − Φ̂(σ) + Φ̂(ξ) ≤ −θ(σ − ξ),

where θ(σ−ξ) := supρ∈ImC>∩εBn
〈ρ, σ−ξ〉. Using Lemma

1 in [8] we have that θ(σ − ξ) = 0 if and only if σ − ξ ∈(
ImC>

)⊥
= KerC (see, e.g., [23]), i.e., θ(σ − ξ) = 0 if

and only if σ ∈ C, and θ(σ − ξ) = β > 0 for all σ /∈ C.
Assuming that x1 /∈ C, and taking σ = x1 ∈ Dom Φ̂ in

the previous inequality, leads us to

〈η1, x1〉 − Φ̂(x1) ≤ 〈η1, ξ〉 − Φ̂(ξ)− θ(x1 − ξ)
< 〈η1, ξ〉 − Φ̂(ξ),

which is a contradiction in view of (9). Hence, x1 ∈ C.
Now assume that there exists an x2 ∈ E(v, S) such that

x2 /∈ C, thus by definition of the set E(v, S) we have

〈η2, σ − x2〉 ≤ Φ̂(σ)− Φ̂(x2)

subtracting and adding η1 on the left-hand side of the inner
product and setting σ = x1 results in

〈−PA(x1−x2), x1−x2〉+ 〈η1, x1−x2〉 ≤ Φ̂(x1)− Φ̂(x2)

Recalling the maximal monotonicity of the −PA map we
have

Φ̂(x2)− Φ̂(x1) ≤ 〈η1, x2 − x1〉 ≤ Φ̂(x2)− Φ̂(x1)



therefore

〈η1, x2〉 − Φ̂(x2) = 〈η1, x1〉 − Φ̂(x1)

= sup
σ∈Dom ∂Φ̂

{
〈η1, σ〉 − Φ̂(σ)

}
.

Applying the same argument as before, we conclude that
x2 ∈ C and therefore E(v, S) ⊂ C.

Now, we turn our study to robustness under exogenous
bounded disturbances. We consider the matched perturbation
case (B1 = B2).

Theorem 1 (Main Theorem): Assume that (1) and (2) are
fulfilled, consider the closed-loop system described by (6)
with B1 = B2. Moreover, assume that the conditions of
Lemma 2 are satisfied for some v ∈ Rm. Then, for some
0 ≤ R <∞ and all disturbances ν such that ‖ν‖ ≤ R, there
exists v∗ = v + ϑ with ϑ ∈ NS(yd), such that the set of
equilibrium points E(v, S) is stable and y converges to yd.

Proof: Consider the closed-loop system (6) and the
following candidate Lyapunov function for the set E(v, S),

V (x) =
1

2
dist2

P (x, E(v, S)) ,

where distP (ζ,A) accounts for the distance from the point
ζ to the set A in norm P , with P satisfying (1) and (2). In
other words,

dist2
P (ζ,A) = min

ξ∈A
‖ζ − ξ‖2P = min

ξ∈A
(ζ − ξ)>P (ζ − ξ).

Taking the derivative of V along system trajectories, leads
us to

V̇ =− 1

2
(x− x∗)>Q(x− x∗)− (x− x∗)>φ1

+ (x− x∗)>P (Ax∗ +B1v) + (x− x∗)>PB1ν,

where 0 ≤ Q = −(A>P + PA), φ1 ∈ ∂Φ̂(x) and we use
the fact that ∇V (x) = P (x−x∗) (see, e.g., [5, Prop. 2.33])
with x∗ the projection of the point x into the closed, convex
set E(v, S) using norm P , i.e.,

x∗ = arg min
ξ∈E(v,S)

‖x− ξ‖P ∈ E(v, S).

Thus, PAx∗+PB1v = φ2, for some φ2 ∈ ∂Φ̂(x∗), then the
subdifferential’s definition leads to

〈φ1, σ1 − x〉 ≤ Φ̂(σ1)− Φ̂(x)

〈φ2, σ2 − x∗〉 ≤ Φ̂(σ2)− Φ̂(x∗).

Taking σ1 = x∗ ∈ Dom ∂Φ̂, σ2 = x ∈ Dom ∂Φ̂ and
substituting in V̇ yields

V̇ ≤− 1

2
λmin(Q)‖x− x∗‖2 + 〈ϑ+ ν, Cx− Cx∗〉,

where Cx ∈ S and Cx∗ = yd. From Lemma 1, we obtain
ϑ + ν ∈ intNS(yd) for some ϑ ∈ NS(yd). Recall that we
are in the matched case (B1 = B2), so the term ϑ can be
viewed as a component of the control input u. Hence, there
exist ε > 0 such that V̇ (x) ≤ −ε‖Cx−Cx∗‖ for all x ∈ Rn.
Moreover, V̇ (x) < 0 for all x /∈ C, consequently x→ C (see
[24, Ch. 1.12]).

Remark 2: It is worth to mention that in the case of
strict passivity, we have a unique equilibrium point x∗
satisfying (8), which furthermore is globally asymptotically
stable (because the matrix Q is positive definite).

In addition, under the strictly passive assumption it is
possible to regulate the output even in the presence of
unmatched disturbances of small magnitude. Indeed, the time
derivative of V satisfies

V̇ ≤ −1

2
λmin(Q)‖x− x∗‖2 + 〈PB2v, x− x∗〉

≤ −1

2
(λmin(Q)− 2‖PB2‖‖ν‖) ‖x− x∗‖2,

Hence, we obtain asymptotic stability of x∗ whenever ‖ν‖ <
λminQ/2‖PB2‖.

Remark 3: From Lemma 2 we have that, for some x1 ∈
E(v, S), the term η1 ∈ rintC>∂Φ(yd). Likewise, for any
x2 ∈ E(v, S), the term η2 ∈ C>∂Φ(yd) with ηi = P (Axi +
B2v), i = 1, 2. Hence, for all λ ∈ (0, 1] we have ηλ ∈
rintC>∂Φ(yd), where ηλ = λη1 + (1− λ)η2.

Motivated by the previous observation, we investigate
whether there exist special cases where it is not be necessary
to add the term ϑ to the controller in order to obtain output
convergence if the external disturbance is small enough.
Namely, if ηi ∈ rintC>∂Φ(yd) for any xi ∈ E(v, S), then
the time derivative of V turns into

V̇ ≤ −1

2
λmin(Q)‖x− x∗‖2 + 〈ν, y − yd〉 − θ(x− x∗).

Now Lemma 1 in [8] and Corollary 3.22 in [25] lead us
to θ(ζ) = ε‖ProjImC>(ζ)‖. Moreover, because ImC> is a
subspace we have ζ − ProjImC>(ζ) ∈ (ImC>)⊥ = KerC
and then Cζ = C ProjImC>(ζ), which implies ‖Cζ‖2 =
‖C ProjImC>(ζ)‖2 ≤ λmax(C>C)‖ProjImC>(ζ)‖2. Fi-
nally we obtain the inequality θ(ζ)

√
λmax(C>C) ≥ ε‖Cζ‖

and we get

V̇ ≤ −1

2
λmin(Q)‖x− x∗‖2

−

(
ε√

λmax(C>C)
− ‖ν‖

)
‖y − yd‖,

from where it is clear that robust output regulation is obtained
whenever ‖ν‖ < ε√

λmax(C>C)
.

Remark 4: Notice that Theorem 1 does not guarantee
asymptotic stability of the equilibrium set. Direct application
of LaSalle’s invariance principle assures that the state will
converge to the greatest invariant set contained in {x ∈ Rn :
V̇ (x) = 0} ⊂ C, which is not necessarily equal to E(v, S).
However, the output regulation is attained.

B. Implementation issues

As it was mentioned before, the subdifferential of a proper,
convex, lsc function Φ : Rm → R defines a maximally
monotone operator. This kind of operators enjoy the property
of approximation by singled-valued, Lipschitz continuous,
maximally monotones maps (see Remark 1).

In our case we are dealing with maximally monotone
controls of the form −u ∈ ∂Φ(y) where Φ = ΨS + ϕ



Fig. 1. Mass spring system.

for some function ϕ which is proper, convex and lsc. If in
addition, we consider the case where ϕ is a continuously
differentiable function then the control u takes the form
−u(t) − ∇ϕ(y(t)) ∈ NS(y(t)). Recalling Remark 1, it
follows that the Moreau-Yosida approximation fε of the
indicator function ΨS satisfies fε(y) = 1

2ε dist2(y, S).
Using once again Proposition 2.33 of [5], we obtain the

Yosida approximation to the normal cone as the gradient
∇fε = y−ProjS(y)

ε . Thus, we can approximate the control
input u by:

−uε(t) =
y(t)− ProjS(y(t))

ε
+∇ϕ(y(t)), (10)

from where we obtain a control which does not depend
directly neither on the state nor the system parameters.
Moreover, there exists a unique solution to

ẋ(t) = Ax(t) +B1(uε(t) + v + ν(t)) (11)

with x(0) = x0. In order to prove convergence of the solution
of differential equation (11) to the solution of the differential
inclusion (6), we use the change of variables proposed in
[7], i.e., z = P 1/2x, which transforms (6) into the inclusion
−ż + B̄2v(t) ∈ −Āz(t) + ∂Φ̂(z(t)) with B̄2 = P 1/2B2,
Ā = P 1/2AP−1/2 and Φ̂ = Φ ◦ CP−1/2. Recalling that
the system satisfies Assumption 1, it is clear that −Ā is
a maximally monotone operator and therefore the right-
hand side of the inclusion is too. Finally, making use of
Proposition 3.11 in [2], we obtain the desired result; i.e., the
sequence of solutions to (11) approaches the solution of (6)
as ε ↓ 0.

The use of the Yosida approximation has the advantage
that the solution of (11) is defined even in the case when
Cx(0) /∈ S as is shown in the following example.

Example 1: Consider a mass-spring system consisting of
two objects with masses m1 and m2 that are coupled through
springs with constants k1 and k2 as shown in Fig. 1, and ν2

account for external bounded disturbances. Taking x1, x2, x3

and x4 as the elongation of spring k1, the elongation of
spring k2, the velocity of mass m1 and the velocity of mass
m2 respectively, we obtain a state space representation in the
following form

ẋ1

ẋ2

ẋ3

ẋ4

 =


0 0 1 0
0 0 0 1

− (k1+k2)
m1

k2
m1

− µ1

m1
0

k2
m2

− k2
m2

0 − µ2

m2



x1

x2

x3

x4



+


0 0
0 0
1
m1

0

0 1
m2

([u1

u2

]
+

[
ν1

ν2

]) (12)
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Fig. 2. State trajectories showing convergence to the equilibrium x∗ =
[0.31 0.34 0 0]> ∈ C.

TABLE I

m1 m2 k1 k2 µ1 µ2
1 kg. 1.5 kg. 8 N/m 40 N/m 0.8 0.5

with output

[
y1

y2

]
=

[
0 0 1 0
0 0 0 1

]
x1

x2

x3

x4

 .
Here, µi denote the friction coefficients related to masses mi,
Li are the lengths of springs ki in the absence of external
forces, i = 1, 2.

The control objective is to maintain both masses without
movement (yd = [0, 0]>) even in the presence of the
forces νi, i = 1, 2. Notice that system (12) meets Assumption
1 with

P =


k1 + k2 −k2 0 0
−k2 k2 0 0

0 0 m1 0
0 0 0 m2

 ,
which clearly satisfies P = P> > 0. Consider the set-valued
control −u(t) ∈ ∂Φ(y(t)) with Φ(y) = ΨS(y) which is
proper, convex and lsc; and set v = 0. In view of yd = [0, 0]>

we propose the set S as

S = conv

{[
0
0

]
,

[
−0.5
−0.5

]
,

[
0
−1

]
,

[
0.5
−0.5

]}
.

Recall that the proposed set S restricts the output y into the
polyhedral specified above. The set of equilibrium points is
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Fig. 3. Control signal compensating the external disturbance ν.
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Fig. 4. Output phase plane for system (12), showing the convergence of
all trajectories to the origin when regularized control (10) is used.

given by the inclusion PAx∗ ∈ C>∂Φ(Cx∗). Substituting
parameters, we have

k1x3∗ + k2(x3∗ − x4∗)
−k2(x3∗ − x4∗)

−k1x1∗ − k2(x1∗ − x2∗)− µ1x3∗
k2(x1∗ − x2∗)− µ2x4∗

 =


0
0
ρ1

ρ2


where ρ =

[
ρ1 ρ2

]> ∈ ∂Φ(Cx∗) ⊂ R2. From the first
two equations we obtain x3∗ = x4∗ = 0 which implies
Cx∗ =

[
0 0

]>
and clearly E(v, S) ⊂ C. Therefore, all

conditions of Theorem 1 are satisfied and consequently
we can achieve robust output regulation for all bounded
external disturbances ν adding an appropriate vector ϑ2 ∈
NS(yd) which strongly depends on the bound of the external
perturbation ν. Figs. 2 and 3 show the state trajectories
and the control signals, respectively, when system (12) is
simulated with the parameters shown in Table 1 and the
external disturbance ν = 3

[
cos(10t) sin(πt) sin(

√
3t)
]>

.
Finally, Fig. 4 shows the output phase plane when the set S
(specified above) is used.

IV. CONCLUSIONS AND FURTHER RESEARCH

The output regulation problem with external disturbances
is treated. We start with a set-valued maximally mono-
tone control and prove the existence and stability of the
equilibrium set. Moreover, the conditions under which the
equilibrium set provides the desired output are established.
Some examples support the theoretical results and opens an
opportunity to study the unmatched case.

A future research line appears in the case when the
Cx(0) ∈ S assumption is not satisfied, in this case a possible
solution is to take the control approach presented in this
note as a second stage of a switched control law. Id est, we
first design a control law that assures the convergence of the
output to the set S and then we switch to the multivalued
controller u(t) + v with u(t) and v satisfying (5) and (7)
respectively.
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