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~ Abstract—We propose an integral sliding surface for linear The sliding surface is typically given in the form of an
time-invariant implicit descriptions (descriptor systems). We  algebraic equation on the system states. Thus, while the
show that, under reasonable assumptions (regularity, stabiliz- system is in the sliding motion, it behaves as a dynamical

ability and a corresponding matching condition), it is possible . . .
to design a controller that drives the descriptor variables to system subject to an algebraic constraint, a phenomenon tha

zero, even in the presence of disturbances. Higher-order sliding 1S most naturally modelled by an implicit description.
motions are required since, for the solutions of the implicit L
description to be well defined, special care must be taken on the A. Motivation

degree of smoothness of the controller and the perturbations. While the literature of both, implicit descriptions and
sliding-mode control is vast (see e.g., [4], [5] for linear
. INTRODUCTION descriptions, [6], [7], [8], [9] for nonlinear description
Implicit systems are ubiquitous in nature. They appeadnd [3] for sliding mode control), there is surprisinglytlét
naturally in the context of mechanics and circuit theory. [1]research connecting these two subjects.
When dealing with complex dynamic systems, it is common We believe that both subjects can benefit from each other:
in scientific and engineering practice to decompose a modgliding-mode control applied to implicit descriptions can
into several, simpler submodels. These submodels, whighing in robustness and ease of implementation, and inplici
typically consist of ordinary differential equations, ahen description theory can bring insight into the design and
interconnected to construct a model for the original agaeg analysis of sliding-mode controllers.
system. Interconnecting the submodels amounts to imposing o
a set of algebraic constraints, so the overall resultingehodB- Contributions

is typically an implicit description. Implicit descriptis also In this paper we address the basic issues of sliding-mode
reveal themselves as time-domain realizations of impropepntrol of implicit descriptions:
transfer functions. « We study the minimal required sliding-order for the

In many cases, it is possible to convert an implicit descrip-  solutions of the implicit description to be well defined.
tion into an explicit state-space equation. Anyhow, beibga , We derive conditions under which the disturbances
to do analysis and engineering design directly on the agigin  can be compensated exactly (matching conditions for
implicit equations would lead to faster design and allow for  implicit descriptions).
more complex models [2]. « We propose a higher-order integral sliding-mode con-

Implicit systems even originate by designer's choice. troller (HOISMC) that compensates perturbations under
Consider in particular the case of sliding-mode control [3] relaxed matching assumptidns

In sliding mode control the design cycle consists of two

stages. First, a sliding surface is designed such that, when Il. PROBLEM STATEMENT

the system trajectories are restricted to the sliding setfa  We consider perturbed implicit descriptions of the form
the system meets the control objectives (e.g., stability). ]

During the second stage, a (possibly discontinuous) chistro ~ £4(t) = Az(t) + Bu(t) , - o(t) = u(t) +w(t), (1)
designed to drive and constrain the system trajectorieSeto tyhere z(¢t) € R", u(t) € R™ and w(t) € R™ are the

sliding surface, irrespectively of the disturbances &m  gescriptor variable, control input and unknown perturati
the system. The robustness property against disturbandes @ timet, respectively. The constant matricEs A and B are
the ease of implementation are probably the most attractiy appropriate dimensions wit of full rank (rank B = m).
features of sliding mode control. We restrict our attention to the case wheleis singular
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condition is equivalent to the existence of a control lawvhile the solution of (3b) can be found by successively
such that the closed-loop system is completely insensitidifferentiating (3b) with respect to time and pre-multiply
to w(t) [13]. by N:

Our control objective is the following:

To design a stabilizing control law that drives th Noo() = @l) + Boli)

o design a stabilizing control law that drives the 9. _ ) .

descriptor variablez(t) to zero irrespectively of NZi(t) = Nia(t) + NBao(t)

the perturbationw(t). :

This prob!em wiII_be state_d more precisely as we go along Nigl(t) = qulngl(t) + qule(qfl)(t) '

the following section and introduce the appropriate assump

tions (cf. Assumptions 1, 2 and 3). Adding all this equations and noting that? = 0 gives
q—1

1. BACKGROUND 2a(t) = — ZNiBQU(i)(t) . @)
A. Implicit descriptions i=0

In this section we recall some basic facts about stabilit}y other words, the descriptor variable, can be written
and stabilizability of implicit descriptions. We refer the€xplicitly as a linear combination of the input and its first
reader, e.g., to [5], [14] for more details. q — 1 derivatives. Clearly, the set of admissible inputs

The qualitative behavior of (1) strongly depends on th&'ust be contained in the set ¢f — 1)-times continuously
structure of the matrix penchE — A4, \ € C. For ease of differentiable functions.

notation, let us writg £, A) := AE — A. Definition 2: The implicit description (1) is calledtable
Definition 1: An implicit description (1) is called segu- If there exist scalars,, 5 > 0 such that, when(t) = 0 for
lar systemif the pencil (E, A) is regular, i.e., if t >0, its descriptor variable:(t) satisfies
7ﬁt
N s el <ac 2O, t>0.
| = 2) Sincev(t) =0 = 0(t) =0 = ..., it is clear from (4)

In other words, a penci{E, A) is regular if there exists
a A such that|AE — A| # 0. The regularity of(F, A) is
important since it ensures that, for any admissible inph, t

that x5 (t) = 0 for ¢ > 0. Thus, the stability of (1) depends
on the dynamics ofz; only, i.e., on the finite structure of

. . ; E A).
solutions of (1) exist and are unique. (E, . .
Assumptio(n )1'The pencil(E A)qis regular Theorem 1 ([5]): The regular system (1) is stable if and
A ’ . ' only if
The determinant in (2) can be written as AE,A)eC |
AE — Al = KILZL (A = Ai) whereC~ is the open left-half complex plane.
wheren, < n (n; = n if and only if £ is nonsingular) ané Definition 3: The regular system (1) &abilizableif there
is a real constant. We refer to(E, A) = {1, Ao, ..., A, } exists a state feedbaekt) = —Kxz(t) such that the closed-
as thefinite eigenvaluesf the pencil(E, A)2. loop system
By an appropriate change of basis, a regular system can Ei = (A — BK)x(t) + Bw(t)

always be decomposed into the so-called Weierstrass form .
with input w(t) is stable.

t1(t) = Jai(t) + Bro(t) (3a) There exists an algebraic characterization of stabilezabl
Nio(t) = xo(t) + Byo(t) , (38b) systems which is reminiscent of Popov-Belevitch-Hautus
criterion for stabilizability of state-space systems.
where z,(t) € R™ is the state variable of theynamic  Theorem 2 ([5]): The following statements are equiva-
subsystenand z»(t) € R™2, ny = n — ny, is the descriptor |ent:
variable of thedifferential subsystemThe matrix J is in (i) The regular system (1) is stabilizable.
Jordan’s form and represents the finite structurg6fA). (ii) rank [\E — A B] = n for all finite A € C*, where

More precisely, Ct is the closed right-half complex plane.
A(Ln,,J) = A(E, A) . (iii) The state-space system (3a) is stabilizable.
" ’ (iv) rank [AI,, —J Bi] =n, forall A e C*.
The matrix N is also in Jordan’s form, it is nilpotent with ~ Assumption 2:The regular system (1) is stabilizable
index of nilpotencey and it represents the infinite structureB. Higher-Order Sliding-Mode Control

Of-|(-fe7§23'|ution of (3a) can be written explicitly as In this section we recall that, with a higher-order sliding-
. mode coptroller_, it is possi.ble to achieve robustness again
21 (t) = e’z (0) Jr/ eJ(t—T)Blu(T>dT 7 perturbations with any desired degree of smoothness for the
0 controller.

Consider first a simple controlled and perturbed system
2The finite eigenvalues of the pendil,,, A) coincide with the usual
eigenvalues ofA. a(t) = u(t) + w(t), (5)



whereu(t), w(t) € R are, again, the control and the unknownWe say that the system exhibits arsliding modeif the
perturbation, and (t) is an output of relative degree one thatconstraintso(t) = o(t) = --- = o""1(t) = 0 are satisfied
we wish to drive to zero. Suppose that the perturbation islentically after a finite period of time. For an arbitraryit
bounded by a known constamth, i.e., |w(t)] < w, for all is always possible to construct a discontinuous contrdl tha
t > 0. A discontinuous control law enforces anr-sliding motion on (8) [17], [19].
By cascading a chain df integrators with the control, the

ut) = —Lsign(o(t)), L=zwo+d, d0>0 (6 relazve degreeg of the system gi]s artificially increased &hil
ensures that the constraintt) = 0 is attained in finite time at the same time, & — 1 degree of smoothness is achieved
and maintained thereafter (the solutions of discontinuoder u(t) (i.e., u(t) is made (k — 1)-times continuously
differential equations are taken in Filippov's sense [15])differentiable). Let us introduce a new set of state vaeabl

This can 2be verified by means of the Lyapunov functiodr+1---,&—+k+1 and define its dynamics by
ch((eUg(;lu(tjio{é ;\;hg;)h has the following time derivative along € () €ria(t) 0
Era(t) Erys(t) 0
V(a(t)) = a(t) (—Lsign(o(t)) — w(t)) : = : + (),
< —lo@®)|(L —wo) < =0/ V(a(t)) . _5r+k(t) Erant1(t) 0
£r+k+l(t) 0 1

It can be readily shown that the solution of

ut) = &aa(t)

W(t) = =V W (1) with ~(¢) a new virtual control, i.e.,

satisfiesWW (T") = 0 for some finiteT' dependent oV (0). () [\ _

According to the standard theory of differential equatidghs w () =~(t) . ©)

W(0) = V(c(0)), thenW (t) > V(a(t)) for all t > 0 [16]. It follows from (8) and (9) that

SinceV is non negative W (7T') = 0 implies V(a(T")) = 0

ando(T) = 0. Because/ is(ngn positive,V(a(i))( :)2) and o) = 5(t) + w® () . (10)

o(t) =0 for all t > T. We say that (6) enforcesfast order

sliding mode(1-sliding mode for short) in finite time.
Consider now a system of relative degree two:

Thus, if there exists a bound;, such thatw®) (¢)| < @, for

all t > 0, then it possible to construct a discontinuous virtual
control v(¢) enforcing an(r + k)-sliding motion in finite
&) &(1) 0 time. Since the actual inpui(t) is obtained byk successive
{5'2@)] = { 0 } + H (u(t) + w(t)) , integrations ofy(t), u(t) will be (k — 1)-times continuously
differentiable.

olt) = &, Remark 1:All the terms in equation (10) are real valued.
ie., The vector caser(t),v(t), w(t) € R™ can be dealt with
G(t) = u(t) + w(t) . (7) simply by consideringn copies of (10).

. L o In order to construct an admissible (sufficiently smooth)
We say that the system exhibits a finite-time 2-sliding modggnroller for (1), we will need the following assumption.
if the constraintso(t) = (t) = 0 are satisfied for alk Assumption 3:Let ¢ be the index of nilpotency ofV

greater than some finite and positive Many finite-time 2- i, (3p) The unknown perturbatiom(t) satisfies the bound
sliding mode controllers can be found in the literature [17]

[18]. An example is the so-calledwisting algorithm, a [w @) <@y, t>0

discontinuous control of the form
for some known constant,.

u(t) = — Ly sign(&1(t)) — Lo sign(&2(t)) IV. COMPENSATING THE PERTURBATIONS
= —Lysign(o(t)) — Lo sign(a(t)) , EXACTLY
with Lo > o and L1 > Lo + @, (see [17] for details). Let us divide the control effort in two parts:
More generally, consider a system of relative degree u(t) = uo(t) +ui(t) (11)
&i(t) £a(t) 0 where uy(t) is a linear feedback responsible of stabilizing
&a(t) &s(t) 0 the unperturbed description
érfl(t) ST—2(t) 0 . . i .
ér(t) 0 1 andu4 (t) is a highly nonlinear control responsible of com-
ot) = &), pensatinguw(t).
Notice that the control and the perturbation enter si-
ie., multaneously in both, the dynamic subsystem (3a) and the

o™ =u(t) +w(t), (8) differential one (3b). Suppose, only for the sake of argurnen



that rank By = m (this impliesn; > m). In this case,

we can forget about the differential subsystem and apply
standard techniques to stabilize the dynamic subsystem. A
fairly obvious procedure to robustly stabilize (1) would be

1) Choose a matrixC’ € R™*™ such thatC'B; is non sin-
gular and such that the motion of along the constraint
o(t) = (CBy)~'Cxz(t) = 0 is stable (i.e., such that(t)
is an minimum-phase output). A matriX can always be
found when (3a) is stabilizable and whemk B; = m 3.

2) Setug(t) = —(CBy)~tCJz(t). The dynamics of the i
sliding variable becomes VT T 6 8 10

Time [s]

Descriptor variables

a(t) = (CBl)_lC(Jxl(t) — B1(CBy)'CJzy(t)+ Fig. 1. Response of (13);-solid, zo—dashed.

+ OBy (w(t) +w(t)) |

which simplifies to
o(t) = ur(t) +w(t), 12
i.e., the sliding variable has relative degree equal to one.
3) Setu&”(t) = ~(t) and designy(t) as a(l + ¢)-sliding
mode controller forr('t9) = ~(t) + w(t).

For ¢ > 1, equation (12) implies that, when th{& + ¢)-
sliding motion occurs, we have, (t) = —w(t) 4. Hence,

’U(t) = Uo(t) + Ul(t) +’LU(t) = —(CBl)ilcfEl(t) .

By construction; (t) and its firstg — 1 derivatives will go
to zero. This implies that,(t) goes to zero too (cf. (4)).
Example 1:Consider the implicit description

Time [s]

Fig. 2. Response of (13), control action.

i1(t) = @i(t) +ult) +wt) (13a) The index .of nilpotency ofN =0 i_s one ¢ = 1), SO
0 — 13b the system will be robust against continuously differdsiga
= z2(t) +ult) +w(), (13D)  perturbations that satisfy the bound(t)| < . For the
which can be written as in (1) with sake of concreteness, let us assume dhat 1. To achieve
a 2-sliding motion we propose to use the twisting controller
E—10 A—loandB—1
oo T (o1 ~ 1 v(t) = —8sign(z1(t)) — 6sign(d1(t)) , (14)
We have so the actual control is given by the continuous function
A—=1 0 ¢
AE — Al = { 0 _J ‘ =-(A-1), u(t) = —x1(t) — / (8sign(x1(7)) + 6sign(z1(7)))dr .
0
from which we conclude that the system is regular, that Figures 1 and 2 show the system’s response to an initial
ny = 1 and that the system is unstable, since it has the finitondition z;(0) = 0.5 and a perturbationv(t) = sin(t). It
eigenvaluex = 1 ¢ C—. Clearly, can be verified that; andx, reach the origin in finite time.

0 -1 1

for all A, which confirms that the obvious fact that system The previous procedure requires to put (1) in Weierstrass

is stabilizable. The system is already in Weierstrass ford®'m (this is not overly complicated if the appropriate
with N =0, J =1, B = 1 and B, = 1. Also, we have Software is available) and more importantly, it requires

A—1 0 1
rank [AE ~ A B] = rank { ] =2=n A. Main result, higher-order integral sliding-mode coritro

rank B; = 1 = m, so steps 1) to 3) can be applied. rank By = m, which can be seen as an additional require-
The scalarC = 1 trivially satisfies the conditions of step Ment (a stringent one) to the usual matching condition. This
1), so we seti(t) = 21 (t) andug(t) = —z1 (). drawback can be circumvented by definingtegral sliding

variable. Roughly speaking, the idea is to split the control

3Such C can be easily computed if (3a) is first put into the so-calledaction as in (11) and to define the sliding variable as a linear

regular form|[3]. _ _ function of the difference between the actual value of the
4By definition, we sety = 0 when E is nonsingular f2 = 0). When . iabl d the ‘val h hi iables Id/

g = 0, ui(¢) is discontinuous and has to be replaced by the so-callegescr!ptor variables an t e ‘value that this variableslaou
equivalent contro[3]. have in the absence of disturbances’ (see [10], [20]).



Theorem 3:Consider an implicit description of the o4l
form (1) satisfying Assumptions 1 and 2. Split the control L |
as in (11), choose a nominal contraf(t) = —Kxz(t) such I |
that

AME,A—BK)cCC~

Descriptor variables

and define the integral sliding variable

ot) = B* {Em(t)—/g (A— BK)a(r)dr| , (15)

where BT = (BTB)_1 BT is B's Moore-Penrose pseudo- o ¢ 4 & 8

inverse. Then, the sliding variable:

1) Satisfies the differential equation (12).

2) Is a minimum-phase output (the solutions of (1) converge
to zero when the constraint(t) = 0 is enforced).
Remark 2:Once a minimum-phase output with relative

degree one is obtained, it is possible to increase the velati

Fig. 3. Response of (17);-solid, zo—dashed.

Indeed, the system is already stable since there is no dynam-
ical subsystem. However, we can use, e.g.,

degree byg. Then, Assumption 3 ensures the possibility of uo(t) = — [71 0] [931] — 21(1)
rejecting the perturbations by enforcing(a + 1)-sliding Z2
motion with a(q — 1)-times differentiable feedbacki ().  to reduceq while maintaining the stability of the system.

Proof: Statement 1) follows from direct differentiation The new characteristic polynomial is
of (15):

-1 A
o(t) = BT (Bi(t) — (A — BK)x(t)) . (16) NE = (A - BK)| H—1 —1} =1+x.
Substitution of (1) in (16) gives \{vhich has the stable roof; = —1 and for whichn; = ny =
o(t) = BY(Buy(t) + w(t)) = ui(t) + w(t) . We haveB™ = [0 1] and BTE = 0, so the sliding
. o variable is
The constraintz(t) = 0 implies ¢ = w4 () + w(t) = 0, ,
that is, u1(t) = —w(¢). This control results in the closed o(t) = —//BJF(A — BK)a(r)dr
loop system 0
t
Ei = Ax(t) + B (—Kz(t) + w(t) — w(t)) = 7/0 (1(7) + 22(7))dr
= (A= BE)z(t), or, equivalently,
which is stable since the finite eigenvalues(éf, A — BK) G(t) = —z1(t) — 22(t) = u () + w(t) .
have negative real part. | o
Example 2:Consider the implicit description Suppose, for simplicity, thato; = 1. To enforce a 2-
sliding mode we can use the twisting controller (14) from
() = x1(t) (17a) the previous example. The resulting controller is
0 = x2(t) +ut) +wl(t) . (17b) t
u(®) = un(t) + w(®) =01(0) + [ (r)ar
This description has the form (1) with 0
. 01 L, 10 d B 0 which, upon substitution gives
10 0 1001 1

u(t) = z1(t) + /Ot (8 sign (/072 (x1(m1) + acg(ﬁ))dﬁ)

(Notice thatu(t) and w(t) act on the algebraic constraint

only, so steps 1) to 3) in p. 4 cannot be applied.) We have + 6sign(zy (1) + mz(Tz)))de i
INE — A| = H_l A ” =1. Fig_qres 3 and 4 show the system’s response to an initial
0 -1 condition z3(0) = 0.5 and a perturbation(t) = sin(¢). It

Thus, the system is regular; = 0 andn, = 2 (there is no  €an bg .verified that:; and zo asymptotically converge to
dynamical part). The system is in the form (3b) with= £ the origin.
andq = 2 (E? = 0). The system is stabilizable since V. ACKNOWLEDGMENTS
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u(t)

Time [s]

Fig. 4. Response of (17), control action.

VI. CONCLUSIONS AND FUTURE WORKS

(23]
[14]

[15]

[16]
[17]
(18]
[19]

[20]

We have proposed two higher-order sliding-mode con-

trollers for linear implicit descriptions. The controléedrive
the descriptor variables to the origin, irrespectively offis
ciently smooth perturbations satisfying a matching caodit

In one of the schemes, the sliding variable is a simple linear
combination of the descriptor variables, but an additional

matching condition is requireddnk B; = m). The second

scheme requires the integration of the descriptor varsable
to generate the sliding surface, but no additional matching

condition is necessary.

Further investigation is required to determine if it is

possible to define a non integral sliding surface with out

the extra rank condition. Higher-order sliding-mode cohtr

of nonlinear implicit descriptions is another line for fotu
work.
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