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Abstract

We propose an integral sliding surface for linear time-invariant implicit systems (descriptor systems). We show that, under
reasonable assumptions (regularity, stabilizability) it is possible to design a stabilizing controller that compensates the matched
perturbations exactly. Higher-order sliding motions are required since, for the solutions of the implicit system to be well
defined, special care must be taken on the degree of smoothness of the controller and the perturbations. The algorithm is
tested on a system where the perturbation enters through an algebraic equation.
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1 Introduction

We consider perturbed implicit systems of the form

Eẋ(t) = Ax(t) +Bu(t) +Dw(t) , (1)

where x(t) ∈ R
n, u(t) ∈ R

m and w(t) ∈ R
p are the de-

scriptor variable, control input and unknown perturba-
tion at time t, respectively. The constant matrices E, A,
B and D are of appropriate dimensions with B of full
rank.We restrict our attention to the case whereE is sin-
gular with rankE = l < n (otherwise (1) could be easily
changed into an explicit system in state-space form).

When the perturbations w(t) enter the implicit system
through the same channel as u(t) we say that the pertur-
bations satisfy the matching condition. More precisely,
the matching condition is satisfied when all the columns
of D are linear combinations of the columns of B, a re-
quirement that can be succinctly written as

rank
[

B D
]

= rankB . (2)

For state-space systems this condition is equivalent to

⋆ This paper was not presented at any IFAC meeting. Cor-
responding author Fernando Castaños. Tel. +52 (55) 57 47
37 35.

Email address: castanos@ieee.org (Fernando Castaños).

the existence of a control law such that the closed-loop
system is completely insensitive to w(t) [1].

Our problem consists in designing a control law that
robustly stabilizes (1), that is, that stabilizes it in spite
of w(t) and in spite of parametric uncertainty.

We note that, while the literature of both, implicit sys-
tems and sliding-mode control is vast (see e.g., [2] for
implicit linear systems and [3] for sliding mode control),
there is surprisingly little research connecting these two
subjects. In order to bridge this gap, we propose an in-
tegral sliding-mode control law:

• For which we determine the minimal required sliding-
order for the solutions of the implicit system to be well
defined.

• That compensates the disturbances exactly if matched
and smooth enough.

• That we combine with other robust techniques to ad-
dress parametric uncertainty, both matched and un-
matched (the particular case without parametric un-
certainty was presented in [4]).

The following section introduces the main assumptions
(regularity and stabilizability), while recalling some
well-known facts about implicit systems. An integral
sliding surface is proposed in section 3. It is shown that,
by appropriately choosing the order of the sliding-mode
controller, it is possible to compensate the matched
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perturbation exactly while respecting the required de-
gree of smoothness. The example used to illustrate the
method is simple but unique in the sense that the per-
turbation enters through an algebraic instead of a dif-
ferential equation. Section 4 extends the results to the
case where there is unmatched parametric uncertainty.
The conclusions are given in Section 5.

2 Main assumptions

The qualitative behavior of (1) strongly depends on the
structure of the matrix pencil λE − A, λ ∈ C. For ease
of notation, let us write (E,A) := λE −A.

Assumption 1 The pencil (E,A) is regular, that is,
|λE −A| is not identically zero.

Recall that |λE − A| is a polynomial of the form
φ
∏n1

i=1(λ − λi), where φ is a real constant and n1 ≤ n
with n1 = n if and only if E is nonsingular. We refer to
Λ(E,A) = {λ1, λ2, . . . , λn1

} as the finite eigenvalues of
the pencil (E,A).

Regularity of (E,A) is important since it ensures that,
for any admissible (smooth enough) input, the solutions
of (1) exist and are unique. Furthermore, by an appro-
priate change of basis, a regular system can always be
decomposed into the so-called Weierstrass form

ẋ1(t) = Jx1(t) +B1u(t) +D1w(t) (3a)

Nẋ2(t) = x2(t) +B2u(t) +D2w(t) , (3b)

where x1(t) ∈ R
n1 is the state variable of the slow sub-

system and x2(t) ∈ R
n2 , n2 = n − n1, is the descriptor

variable of the fast subsystem. The matrix J is in Jor-
dan’s form and represents the finite structure of (E,A).
More precisely, Λ(In1

, J) = Λ(E,A). The matrix N is
also in Jordan’s form, it is nilpotent with index of nilpo-
tence q and it represents the infinite structure of (E,A).

The solution of (3a) is well-known, while the solution
of (3b) can be found by successively differentiating with
respect to time and pre-multiplying by N :

x2(t) = −

q−1
∑

i=0

N i
(

B2u
(i)(t) +D2w

(i)(t)
)

(4)

In other words, the descriptor variable x2 is a linear
combination of the inputs and their first q−1 derivatives.

Remark 2 It follows from (4) that, if we require conti-
nuity of the solutions, the system inputs (perturbations
and controls) must be smooth enough. In a worst case
scenario, the controls and the perturbations have to be
(q − 1) times continuously differentiable (Cq−1).

Assumption 3 Let q be the index of nilpotence of N
in (9). The unknown perturbation w(t) is Cq−1 and sat-
isfies the bound ‖w(q)(t)‖ ≤ w̄q for all t ≥ 0 and some
known w̄q ≥ 0.

The implicit system (1) is called impulse free if N = 0.
The name stems from the fact that, when solutions are
taken in the distributional sense, the system’s free re-
sponse does not contain impulses. A system is impulse
free if and only if n1 = l (see [2,5] for details). When the
system is impulse free, Assumption 3 reduces to continu-
ity of w and boundedness of its first derivative, a fairly
reasonable assumption.

Let us recall some basic facts about stability and stabi-
lizability of implicit systems. We refer the reader to [2,6]
for more details.

Definition 4 The autonomous regular implicit system

Eẋ(t) = Ax(t) (5)

is called stable if there exist scalars α, β > 0 such that
‖x(t)‖2 ≤ αe−βt‖x(0)‖2 for all t > 0.

Theorem 5 [2, p. 69] The autonomous regular implicit
system (5) is stable if and only if Λ(E,A) ∈ C

−, where
C

− is the open left-half complex plane.

Assumption 6 The unperturbed regular implicit sys-
tem

Eẋ(t) = Ax(t) +Bu(t) (6)

is stabilizable. That is, there exists a feedback control
u(t) = −Kx(t) such thatEẋ(t) = (A−BK)x(t) is stable.

Theorem 7 [2, p. 71–72] The following statements are
equivalent:

(i) System (6) is stabilizable.
(ii) ẋ1(t) = Jx1(t) +B1u(t), is stabilizable.

(iii) rank[λE −A B] = n for all finite λ ∈ C̄
+.

3 Compensating the matched perturbations

In this section we propose an integral sliding surface [7,8]
that is suitable for the compensation of matched incerti-
tude in implicit systems. The controllers that drive the
system trajectories to the sliding surface are discussed
afterwards.

Lemma 8 Consider an implicit system (1) satisfying
Assumptions 1, 6 and the matching condition (2). Split
the control as u(t) = un(t) + up(t), choose a nominal
control un(t) = −Kx(t) such that Λ(E,A− BK) ⊂ C

−

and define the integral sliding variable

σ(t) = B+

[

Ex(t)−

∫ t

0

(

(A−BK)x(τ)
)

dτ

]

(7)
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with B+ the pseudo inverse of B. Then, the sliding vari-
able: 1) Satisfies

σ̇(t) = up(t) + wm(t) , (8)

where wm is defined by Dw = Bwm. 2) Is a minimum-
phase output.

PROOF. Statement 1) follows from direct differentia-
tion of (7). The constraint σ(t) ≡ 0 implies σ̇ = up(t) +
wm(t) ≡ 0, that is, up(t) = −wm(t). This control results
in the closed loop system Eẋ(t) = (A−BK)x(t), which
is stable since, by construction, all the finite eigenvalues
of (E,A − BK) have negative real parts. This proves
Statement 2).

By cascading a chain of q integrators with the control,
the desired (q − 1) degree of smoothness is achieved for
up(t). The required smoothness is at the expense of an in-
creased relative degree. This is detailed in what follows:
Consider the differential equation σ(r) = γ(t) + δ(t),
where γ(t), δ(t) ∈ R are a control and an unknown per-
turbation, and σ(t) is an output of relative degree r. We
say that the system exhibits an r-sliding mode if the
constraints σ(t) = σ̇(t) = · · · = σ(r−1)(t) = 0 are satis-
fied identically after a finite period of time. If a bound
on δ(t) is known, it is always possible to construct a dis-
continuous control that enforces an r-sliding mode, for
an arbitrary r (see, e.g., the family of quasi-continuous
controllers [9])

Now, let us define the auxiliary control γ(t) = u(q)(t).
Computing the q-th time derivative of (8) gives the ex-

pression σ(q+1)(t) = γ(t) + δ(t) with δ(t) = w
(q)
m (t).

Thus, if there exists a bound w̄q such that |w
(q)
m (t)| ≤ w̄q,

then it possible to construct a discontinuous γ(t) enforc-
ing a (q + 1)-sliding motion in finite time. Since the ac-
tual input up(t) is obtained by q successive integrations
of γ(t), up(t) will be C

q−1.

The following example illustrates the use of Lemma 8 in
combination with higher-order sliding-mode control.

Example 9 Consider the implicit system

ẋ2(t) = x1(t) (9a)

0 = x2(t) + u(t) + w(t) . (9b)

Notice that the solutions are x2(t) = −u(t) − w(t) and
x1(t) = −u̇(t)− ẇ(t): the system acts as a differentiator.
Despite the system’s simplicity, it is not obvious how to
compensate w(t), even if x2(t) is available.

The system has the form (1) with

E =

[

0 1

0 0

]

, A =

[

1 0

0 1

]

and B = D =

[

0

1

]

.

We have |λE − A| ≡ 1. Thus, the systems is regular
with n1 = 0 and n2 = 2 (there is no slow subsystem).
Moreover, the system is in the form (3b) with N = E
and q = 2 (E2 = 0). The index of nilpotence indicates
that the inputs must be at least C1.

The system is stabilizable since rank[λE −A B] = 2. In-

deed, the unforced system is already stable since there is
no slow subsystem. However, we propose un(t) = −Kx(t)

with K = [−1 0] in order to reduce q while maintaining

the stability of the system. The new characteristic polyno-
mial is |λE−A+BK| = 1+λ, which has a stable root at
λ = −1 and for which n1 = l = 1 (the system is impulse
free) and n2 = 1. Now, the value of q for the closed-loop
system is one, so inputs are required to be continuous only
(this reduces the required order of the sliding controller).

Since B+ = [0 1] and B+E = 0, the sliding variable (7)

takes the form σ(t) = −
∫ t

0
(x1(τ) + x2(τ1)) dτ1. Note

that σ̇(t) = −x1(t) − x2(t) = up(t) + w(t), as predicted
by Lemma 8.

To produce a continuous controller, we set

up(t) =

∫ t

0

γ(τ1)dτ1 (10)

with γ(τ1) a 2-sliding controller. We can use, e.g., the
so-called quasi-continuous controller for r = 2:

γ(τ1) = −α
σ̇ +

√

|σ| sign(σ)

|σ̇|+
√

|σ|
(τ1) ,

where α is a controller gain that has to be large enough
(see [9] for details).

Fig. 1 shows the system response to an initial condition
x1(0) = 0.5 and a perturbation w(t) = 1.5+sin(t) (w̄1 =
1). The initial condition x2(0) is determined by (9b). The
controller gain was set to α = 5. It can be verified that
x1(t) and x2(t) converge exponentially to the origin.

4 Unmatched uncertainty

The decomposition of the control law into a pair of nom-
inal and sliding-mode components allows for easy inte-
gration with other robust techniques. These techniques
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Fig. 1. Response of (9). The controller compensates the dis-
turbance exactly. Exponential convergence to the origin can
be observed, in spite of w.

can be used to address unmatched parametric uncer-
tainty or unmatched external disturbances. As an exam-
ple, let us recall a robust stability result.

Suppose that A = A0 +M∆N1 and B = B0 +M∆N2,
where A0, B0, M , N1 and N2 are known and ∆ is a
parametric uncertainty matrix that satisfies ||∆|| ≤ 1.

Theorem 10 [10, p. 59] The implicit uncertain system
Eẋ(t) = Ax(t)+Bun(t) is generalized quadratically sta-
bilizable if and only if there exists matrices P > 0, Q, Y
and a scalar ε > 0 such that

[

Γ(P,Q) + εMM⊤ Ω(P,Q)⊤N⊤
1 + Y ⊤N⊤

2

N1Ω(P,Q) +N2Y −εI

]

< 0 ,

(11)
where

Γ(P,Q) = Ω(P,Q)⊤A⊤

0 +A0Ω(P,Q) +B0Y + Y ⊤B⊤

0

Ω(P,Q) = PE⊤ + SQ

and S ∈ R
n×(n−l) is any matrix with full column rank

that satisfies ES = 0. Assume, without loss of general-
ity, that Ω(P,Q) is nonsingular. Then, a desired robustly
stabilizing state feedback controller can be chosen as

un(t) = Y Ω(P,Q)−1x(t) . (12)

By generalized quadratic stability, it is meant that there
exists a common closed-loop quadratic Lyapunov func-
tion that is valid for all admissible ∆. The nonsingular-
ity of Ω(P,Q) is without loss of generality in the sense
that, if singular, it can always be replaced by a non-
singular Ω̂(P,Q) = Ω(P,Q) + P̃ in which P̃ satisfies

EP̃ = P̃⊤E⊤ ≥ 0 and the generalized Lyapunov in-
equality Ω̂⊤(P,Q)A⊤

0 +A0Ω̂(P,Q)+B0Y +Y ⊤B⊤
0 < 0

(see [10] for details).

It can be shown that generalized quadratic stability im-
plies that the closed-loop system is regular and impulse
free. Recall that the latter property implies that N = 0,
which in turn implies that q = 1, so only continuity (as
opposed to continuous differentiability) of the inputs is
required for well posedness.

Let us now consider parametric uncertainties of the form

A = A0 +M∆AN1 and B = B0(I +∆B) , (13)

where ||∆A|| ≤ 1, ||∆B || ≤ e < 1. The particular form
of B implies that its uncertainty is matched. The un-
certainty on A, on the other hand, is allowed to be un-
matched. Indeed, let us write M = MB +MB⊥ , where

rank[B0 MB ] = rankB0 (14)

and rank[B⊥
0 MB⊥ ] = rankB⊥

0 with B⊥
0 a full-rank ma-

trix such that B⊤
0 B⊥

0 = 0 (note that this decomposition
is always possible for arbitrary M).

The uncertain terms MB∆AN1x(t) and B0∆Bun(t) are
matched (but now state-dependent) and can be compen-
sated by up(t). The remaining term, MB⊥∆AN1x(t), is
unmatched and can be dealt with using Theorem 10.
This is precisely stated in the following theorem.

Theorem 11 Consider an implicit perturbed system (1)
with parametric uncertainty of the form (13). Suppose
that:

i) The matching condition (2) holds.
ii) The bound ||ẇ(t)|| ≤ w̄1 holds for some known w̄1.
iii) The LMI (11) is solvable with

M = MB⊥ and N2 = 0 .

Then, there exists a continuous control that enforces
‖x(t)‖2 ≤ αe−βt‖x(0)‖2 for all t > 0.

PROOF. Define the sliding variable

σ(t) = B+
0

[

Ex(t)−

∫ t

0

(A0 −B0K)x(τ)dτ

]

(15)

with K = −Y Ω(P,Q)−1. Split the control as u(t) =
−Kx(t) + up(t). When the system is constrained to the
sliding surface we have

σ̇(t) = B+
0

[ (

(MB0
+MB⊥

0

)∆AN1 −B0∆BK
)

x(t)+

B0(I +∆B)up(t) +Dw(t)
]

= 0 . (16)
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Noting that B+
0 B0 = I, B+

0 MB⊥

0

= 0 and solving for

up(t) gives

up(t) = −(I +∆B)
−1

(

(B+
0 MB0

∆AN1 −∆BK)x(t)+

B+
0 Dw(t)

)

. (17)

Note that B0B
+
0 [MB0

D] = [MB0
D] (cf. (2) and (14)),

so substitution of (17) in (1) gives the sliding dynam-
ics Eẋ(t) = (A0 − B0K +MB⊥

0

∆AN1)x(t). Stability of

this system is a direct consequence of Theorem 10. The
Theorem also ensures that, for the closed-loop system
Eẋ(t) = (A − BK)x(t) + Bup(t) + Dw(t), q = 1, so
x(t) will be continuous if up(t) and w(t) are. A continu-
ous controller that constrains the system to the sliding
surface can be finally constructed by adding one inte-
grator as described in Section 3 and applying a second-
order quasi-continuous controller with state-dependent
gain as described in [11].

Example 12 Consider the uncertain system

ẋ2 = (1− 2δ1)x1(t)− 2δ1x2(t) (18a)

−w(t) = δ1x1(t) + (1 + δ1)x2(t) + (1 + δ2)u(t) (18b)

with |δ1| ≤ 1, |δ2| ≤ 0.1 and w̄1 = 1. The nominal
part is the same as in Example 9, while the parametric

uncertainty is determined by M = [−2 1]⊤, N1 = [1 1],

∆A = δ1 and ∆B = δ2. It is not hard to verify that the
open-loop system is unstable for all−1 < δ1 < 0 and that
its finite eigenvalue tends to infinity as δ1 tends to zero.

We have MB = [0 1]⊤ and MB⊥ = [−2 0]⊤. Using

YALMIP over SeDuMi, the set of matrices

P =

[

0.32 0

0 0.68

]

, Q =
[

1.48 0
]

Y =
[

−0.68 −0.41
]

, P̃ = 0.05E

was found to be a solution of the LMI (11) with M
replaced by MB⊥ and N2 = 0. Plugging the solution

into (12)we obtain un(t) = −Kx(t), whereK = [8.3 19].

This control law robustly stabilizes the system vis-à-vis
the unmatched parametric uncertainty MB⊥∆AN1. The
matched uncertainty is compensated using (10) with the
aid of the sliding variable (15), i.e.,

σ(t) =

∫ t

0

(K1x1(τ) + (K2 − 1)x2(τ)) dτ .

The second derivative is

σ̈(t) = K1ẋ1(t) + (K2 − 1)ẋ2(t) (19)

-1

-0.5

0

0.5

0 2 4 6 8

-1

0

1

Fig. 2. Response of (18). The controller compensates w ex-
actly and stabilizes the system, in spite of parametric uncer-
tainty.

(note that σ̇(t) is readily available). By setting γ(t) =

u
(q)
p (t) = u̇p(t) and differentiating (18b) we obtain

K̂1ẋ1(t) = (1− K̂2)ẋ2(t) + (1 + δ2)γ(t) + ẇ(t) ,

where K̂1 = K1(1 + δ2)− δ1 and K̂2 = K2(1 + δ2)− δ1.

Solving for ẋ1(t), substituting in (19) and using (18a)
gives

σ̈(t) = h(x(t), ẇ(t), δ) + g(δ)γ(t) ,

where h(x, ẇ, δ) = a(δ)·x+k(δ)ẇ and g(δ) = k(δ)(1+δ2)

with k(δ) = K1/K̂1 and

a(δ) =
(

k(δ)(1− K̂2) + (K2 − 1)
) [

1− 2δ1 −2δ1

]

.

Following [11], we propose the auxiliary control

γ(τ1) = −αΦ(x(τ1))
σ̇ +

√

|σ| sign(σ)

|σ̇|+
√

|σ|
(τ1) (20)

in which Φ(x) is such that, for any d > 0, the inequality
αg(δ)Φ(x) > |h(x, ẇ, δ)| + d holds for sufficiently large
α. After performing some basic bounding of g and h, it
is not hard to see that Φ(x) = (5.3||x||+3) satisfies such
condition with α = max {1, d}.

Fig. 2 shows the system response to an initial condition
x2(0) = 0.5 and a perturbation with a triangular wave-
form (w(t) is not C1 but |ẇ(t)| is bounded). The uncer-
tain parameters were set as δ1 = −0.5 and δ1 = −0.1.
The controller gain was set to α = 1. It can be verified
that x1(t) and x2(t) converge exponentially to the origin.
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5 Conclusions

Sliding-mode control achieves robust stability by en-
forcing algebraic constraints in dynamical systems. It
then makes sense to study the sliding-mode stabilization
problem for systems that already include algebraic con-
straints, whether the constraints appear naturally in the
physical process, whether they result from a model sim-
plification (e.g., as in singular perturbation theory) or
whether they result from a lower-level control loop (e.g.,
as in a hierarchical sliding-mode control setup).

The integral sliding surface proposed in Lemma 8 allows
for the exact compensation of matched perturbations.
The sliding surface is not much different from the one
proposed in [8], but the required analysis is not straight-
forward because implicit systems involve subtle, yet im-
portant issues such as regularity, impulse freeness and
admissibility of the inputs. In particular, it is shown that
the control has to be Cq−1. The examples presented are
new in the sense that the perturbations enter the system
through an algebraic constraint.
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