Home Exercises for the course
"Identification of Parameters, Filtering, Prediction
and Smoothing of Dynamic Models"

Exercise 1 Let us consider the following ARMA model

Tp+1 = Ty + buy, + (,,,
Cn = gn + dlgn—l + d2£n727 (1)
Ty Un,C, € RY, n=0,1,...,

with

(2)

and {&,},,_o.1. 15 a stationary sequence of independent Gaussian random
variables satisfying

a=0.5,b=1, dg =0.3, do = —0.33,
xo =5, up =sin (0.3n),

E{fn} =0, E{fi} =o?= 1,
E{§7,£k} ”zk 07 E {gnxn} = 07 (3)
B ey} = E (€0 in} = F {6, yun} —0

The model (1) can be represented in the generalized regression format as

Tp+1 = CTZn + Cna

(4)

a In . .
C .= b y Rp = ” - genemlzzed regression vector.
mn

Problem: estimate the vector c using in each time n the observations

($n+1,zn) .
To do that let us apply the Instrumental Variable (IV) estimation algorithm

Cn+1 = Cp + ann ($n+1 - Z;;,cn)7 Co = < 8 ) P

anl'UnZTanl (5)
Lp=Thn1— —n—— 2L ln1vn # -1,
! 1+ ZJLFn—lvn - 1 #

Lo =p ks, p=1075.

Notice that

- for v, =z, this is Least Squares Method (LSM);

- for v, = zp_o this is Instrumental Variables Method (IVM);
Show (by numerical simulations) that LSM method does not work in this exam-
ple, but IVM correctly estimates unknown parameter c, namely,

o C<0.5>
nnﬁoo o 1 ’



Exercise 2 Let us consider the following RAR (Regression-Auto-Regression)
model with scalar output .11 and independent noise sequence {‘fn}nzo,l,..:’

Tn+4+1 = ATn + bun + {n, (6)
Ty Un, &, € RY, n=0,1,....
where
a():0.5, bzl,.’b0:5} (7)
and {€,},,—o.1... 15 a stationary sequence of independent random variables
E{&,} =0,
E {gnfk} nik 07 E {gnxn} = 0; (8)

which in generalized regression format can be represented as

Tnt+1 = CTZn + 5117
a x A _ 9
c:= ( bO ) y Zp = < " ) — generalized regression vector. )

Un

Problem: Find the Cramer-Rao information low-bound, that is, cal-
culate the right-hand side of the matrix inequality

lim nE{(c, —¢)(cp — )T} > T = lim nl;' (¢,n) (10)

n—oo n—oo

valid for any estimates c,, as a function of all the observations (z1,20; ..., Tn+1,%n)
available at time n for two cases:

Case a) {un},_q, . is a stationary sequence of independent random vari-
ables with Laplace distribution

1
pole) = o { -}, 0z,
a

a

and {£,},,_0.1.. is a stationary sequence of independent random wvariables
with Gaussian distribution

1 z?
pe (z) = \/§geXp{_20}’ o=1

Case b) {u,},_,,  1is a stationary sequence of independent random vari-
ables with Gaussian distribution

1 z?
pe (z) = \/io-eXp{Qo'}’ o=1

and {&,},,_o.1. . 15 a stationary sequence of independent random variables
with Laplace distribution

1 T
pu () = 2anp{_a|}’ a=2;



Remark: Simulations are not required, only numerical calculation of the infor-
mation low-bounds.

Hint (help): use the following result.

Theorem 3 If in the model (9) with i.i.d. (independent identically distributed)
centered "noise" sequence {£,,} the generalized inputs {z,} satisfy the following
conditions

1)

2)

3)

"strong law of large number " (SLNL) for {z,}

1 n
H (1)
n =
the convergence of "averaged" inputs covariation
1 n
=S E{zz]} — R>0 (12)
n +—o n—oo
2n (under a fized prehistory 2" := (z1,..., 2,_1) and fized x,,) does not

depend on c, that is,

V.lnp,, (vi | xn,ztfl,c) =0(n=1,..)

then the information bound under the reqular data vy, := (mILH, z,TL)T €
RME g

I= lim nl;t (e,n) = R (pe) (13)
where
d 2
Al
Ip (pe) :=E { [(lnpg (5))1]2} = efR [dpg(v)]dv (14)

Fisher information is

a) for Gaussian noise &, : Ir (p¢) =02, E {f?} =02,

b) for Laplace noise &, : Ir (pe) =a 2, E {5?} = 2a.

To solve the problem it is sufficient to calculate

R = lim *ZE{%Z;}— lim Z[ E{aft} E {ziu}

n—oo N n—oo n E {utxt} E {utz}



Exercise 3

Recurrent version of the Mazimum Likelihood Estimating Procedure:

Cn = Cn—1 — Fnlgl (pﬁ) Zn

Fn+1 =TI,

dv

Fn Zn+41 Z;+1Fn

In p (mn+1 — CIL_lzn)

, M2 ng

L+2) Thznga

(15)

-1
o
_ —1 _ T _ —1
Cng = Zno Vigs Tng = (Z:()tht) = Zno
t=

If for the scalar model (9) the specific conditions hold, then the procedure
(15) is asymptotically efficient (the best one) under any regular (not only
Gaussian) i.i.d. noise in the dynamics of the system.

Calculate and prepare the corresponding the best nonlinear transformations

P () = ¢* (v) = ~T5" (pe) - Ine (v) (16)

(in this case I (pe) = In" (pe) is a scalar) for

a) Laplace noise density

1 v _
ps(v)=2aexp{—|a|}, a=1; Ip (pe) =a™?

b) Cos? noise density

z0052<7T(v—c)> for |[v—c|<a
pe(v) =4 a 2a -

Il
—
IS

,ail, IF(p)
0 for 1 ¢

lv—c|>a
Take ¢ = 0.

Exercise 4
Consider the following system

y(k) = 0.85y(k — 1) + 2u(k) + n(k),
y(0) = 3,7(0) = £(0) =0,
(17)
n(k) = —0.3n(k — 1) + £(k) + 0.8£(k — 1),
u(k) = sin(0.2k),

with £ as an independent random sequence having the Logistic distribution
exp { —n }
o
v — 2
o (1 + exp { H })
o

pe (v p,o)= —00 <z <00 (18)



where p € (—00,00) is mean value and o which is a scalar parameter. For

simulation take
pw=0, 0=1.

The system (17) can be rewritten as follows

y(k) = z(k)Te+n(k), k=1,2,..
n(k) = H(g k), (19)
B 14+ 0.8¢q~ B
HgH)="—""F7"T— Lok =z (k-1
(07 = e 0 a0 i=a (k= 1)
with
o yk—-1) (085
z(k) = < u(k) , Ci= 9
The whitening process is then given by
g(k) = H (g My(k), 2(k) = H (g7 ")z(k),
or in the extended form,
y(k) +0.87(k — 1) = y(k) + 0.3y(k — 1), 5(0) = y(0),
Z(k)+08Z2(k—1) = 2(k) + 0.3z(k — 1), 2(0) = 2(0),
where the "inverse filter" has the transfer function
1, — 1+0.3¢g71
H Y ¢ =—"F—.
(@) = 508
The recursive WLSM (Whitening-Least-Square-Method) algorithm is

PR A ()

Cnp = Cp—1 — 1 Fnzni V=Tp — 25 Cn_1"

bR e (v) o=t '
(20)
5 5T
DoizZiloot )y 5 1(0) = 105,

Fn = ]-—‘nf - = =
! 1+ zﬁFn_lzn

Here we need to calculare the Fisher Information Iz ¢. Take ¢(0) = 2.
Task: To simulate this identification WLSM-process with whiten-
ing and without, and demonstrate that LSM without whitening does

not work, using Matlab for generating the Logistic distribution:

pd = makedist("Logistic’,’mu’,;mu,’sigma’,sigma),

and
pd = fitdist(x, Logistic’).



Exercise 5 (Recurrent Residual Method (RRM))
Consider the plant

Tpt1 = ATy + buy + &, +d€,,_4,
Ty Un, &, € RY, n=0,1,...., (21)
n=0:20=0, {_; =0.

Problem: estimate numerically parameters ¢ = (a,b,d)" , using the algorith

— T —
Cnp = Cp—1 — Fnzn (xn-‘rl - Cn_lzn) =Cp—1 — Fnzngn-‘rl;

Tnzni12) T
R M; n 2 no,
1421 Tnzng (22)
1 <& - 1
C’ﬂo = Z’n—o no» Fno = <tzoztth> = Z’;o ?
where
Zn = (xna Unaen)T y (23)
with the sequence {e,,} generated by the recurrency
_ T
En+1 = Tpn+1 — Cp_1”n; 24
n=12,..; &g =0. (24)

Here &, is the Standard Gaussian random value (E{¢,} =0, E{£5} = 0?) and
real values (used for simulations) of the parameters are:

]a=0.5,b:—1,d=—0.7.\

The input u,, is

| w, = 0.6sin (0.1n) .|

Present the figures with ¢, = (an,bn,d,)" and A,, = g, — £, which should

satisfy
A, 30
n—oo

Exercise 6 (Huber’s robust identifiers)

In the case of dynamic autoregression model (ARX-model) where the gen-
eralized inputs are dependent on the state of the system, the matrix R depends
on pe too, and therefore, we deal with the complete problem (?7?), namely, we
need to calculate

sup, [Ire (pe) R (pe)] ™ (25)



and to find the worth distribution p¢ within the considered class P. For the
AR-model

Ly
Yn+1 = Z asYn—s +&, =C€Tvp + &,
s=0

cl = (aO’ ""aLa)7 V’ITL = (ynayn—la -~-ayn—La)

we have
1 n
- Z E{viv]} = R
t=0

where R satisfies
R = ARA + 025,

with
apg ai ar, 1 0 0
1 0 0 0 0 0
4—ll0o 1 o0 0 || zy=|[0 0 0 0
0 .0 0 0 .0 0
0 0 1 0 0 0 0 0
Obviously, R can be represented as
R =02Ry,
where R is the solution of
so that the problem (25) is reduced to
-1
sup [0 (pe) Ir (pe)]
pgeP
or equivalently, to
inf [o? I 26
it [o% () I (pe)] (26)

Problem: to design the asymptotically robust optimal identification algo-
rithm in the format

_ d
Ch=Cp1— v, It (10;) 7 I pg (V) o=z i1—cl_ vas

ann+1VT T
n+1-"n
Fn-‘rl - Fn

>
L+ v (Tuviagr’ = (27)

—1
no
— 7—1 — T _ -1
Cno = Zno Vnov Fno - (Zoztzt> - Zno ’
t=




where
() = inf [o2 (pe) I
pé(v) arg In [0% (pe) I (pe)]

for the AR model

Tn+1 = A0Tn +a12,-1 + fn,

Tn, &, ERY, n=0,1,..,

apg = 0.5,&1 = 0.3,$0 = —1,.73_1 =0

with noise ¢, from the class Class P3'f (containing all centered distributions
with a variance not less than a given value):

PR = {pg : ]R[x?pg (z)dz > ag}. (28)

and in the same time from the class Class Py (of all symmetric distributions
nonsingular in the point x = 0):

P1 = {ps :pe(0) = % > 0}, (29)

that is
pe € 'P{‘R N7P;.

Hint:

Lemma 4 (on the class P;'%)

pi(x) = arg inf Ir (pe), 30
e (@) pe€PsM 02 (pe) =03 (pe) (30)

that is, the worth on PR distribution density pg (z) coincides with the worth
distribution density on the classes P; characterizing distribution uncertainties
for static (R-models) provided that

o? (pz (x)) =03. (31)

Proof. It follows directly from the inequality

o? (pe) Ir (pe) > oplF (pe) -

Lemma 5 (on the class P;)

L[kl
“(x) = arg inf Ip(p) = — exp{ —— 2
v (0) =g inf I () = 5 exo {~121 (32)

that is, the worth on Py distribution density is the Laplace one given by (32).



Any numerical simulations are not required! Only you need to
give the analitical formula for

— * d *
[Fl (pg) I In pg (v)
in the algorithm (27).

Exercise 7 (Kalman'’s filtering)
Consider the stochastic system

dz (t) = [Az(t) + b(t)] dt + ZdW, (t), 2(0) = o,
(33)

dy(t) = cTz(t)dt + rdW,(t), r >0,

where W (t) and W, (¢) are standard (with unite variance) independent Wiener
processes.

For the simulation in Simulink here may be used the, so-called, engineering
presentation of this system as

() = Az(t) + b(t) + o, (t), x(0) = o,

y(t) = cTx(t) + 7€, (1), >0,

where £, (t) and &, () are associated gaussian white noises (with zero mean and
variance equal 1), namely,

d

€, (1) ~ TILD), &, (1) ~ W, (1)

(which do not exist in rigorous mathematical sense).
To estimate the current states 2 (t) let us apply the Kalman filter

dz (t) = [AZ (t) + b(t)] dt + L (t) [dy, (t) — & (¢) dt] , o is fized. (34)

that In the engineering interpretation it looks as

%:z (t) = A (t) + b(t) + L (£) L‘iyt (t) - cTé (t)} , & is fixed. (35)

d
We assume that L (t) is available!

Here

(L(t)=L"(t)=r"P(t)c,

where

|P(t) = E{Az(t) ATz (1)} | (37)




satisfies the following differential Riccati equation

P(t)=AP(t)+ P(t) AT + ZET —r=2P (t)ccTP (1),

P(0)=E{Az(0)ATz(0)}

For simulation take

-1 1 - 10
2 — = —
x(t)e R*, A= 0 2],H—0.5{0 1},

2(0) = ( ! ) b(1) :O.6< fﬁg;%

To analyze 3 situations:

1)62(_11>,2)c=((1)),3)c=<

and for each of them to draw the pictures

5 (t) = ( o ),w): ( o )

(z; (t) and z; (t) in the same graphic) and

t{P (1)} =E{laz 1)}

10



