
Home Exercises for the course
"Identification of Parameters, Filtering, Prediction

and Smoothing of Dynamic Models"

Exercise 1 Let us consider the following ARMA model

xn+1 = axn + bun + ζn,
ζn = ξn + d1ξn−1 + d2ξn−2,
xn, un, ζn ∈ R1, n = 0, 1, ...,

 (1)

with
a = 0.5, b = 1, d1 = 0.3, d2 = −0.33,

x0 = 5, un = sin (0.3n) ,

}
(2)

and {ξn}n=0,1... is a stationary sequence of independent Gaussian random
variables satisfying

E {ξn} = 0, E
{
ξ2n
}

= σ2 = 1,

E {ξnξk}
n 6=k
= 0, E {ξnxn} = 0,

E {ξnun} = E
{
ξn−1un

}
= E

{
ξn−2un

}
= 0.

 (3)

The model (1) can be represented in the generalized regression format as

xn+1 = cᵀzn + ζn,

c :=

(
a
b

)
, zn :=

(
xn
un

)
− generalized regression vector.

 (4)

Problem: estimate the vector c using in each time n the observations
(xn+1,zn) .
To do that let us apply the Instrumental Variable (IV) estimation algorithm

cn+1 = cn + Γnvn (xn+1 − zᵀncn) , c0 =

(
0
0

)
,

Γn = Γn−1 −
Γn−1vnz

ᵀ
nΓn−1

1 + zᵀnΓn−1vn
, zᵀnΓn−1vn 6= −1,

Γ0 = ρ−1I2×2, ρ = 10−5.

 (5)

Notice that
- for vn = zn this is Least Squares Method (LSM);
- for vn = zn−2 this is Instrumental Variables Method (IVM);

Show (by numerical simulations) that LSM method does not work in this exam-
ple, but IVM correctly estimates unknown parameter c, namely,

cn →
n→∞

c =

(
0.5
1

)
.
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Exercise 2 Let us consider the following RAR (Regression-Auto-Regression)
model with scalar output xn+1 and independent noise sequence {ξn}n=0,1,...:

xn+1 = a0xn + bun + ξn,
xn, un, ξn ∈ R1, n = 0, 1, ....

}
(6)

where
a0 = 0.5, b = 1, x0 = 5 } (7)

and {ξn}n=0,1... is a stationary sequence of independent random variables

E {ξn} = 0,

E {ξnξk}
n 6=k
= 0, E {ξnxn} = 0,

E {ξnun} = E
{
ξn−1un

}
= E

{
ξn−2un

}
= 0.

 (8)

which in generalized regression format can be represented as

xn+1 = cᵀzn + ξn,

c :=

(
a0
b

)
, zn :=

(
xn
un

)
− generalized regression vector.

(9)

Problem: Find the Cramer-Rao information low-bound, that is, cal-
culate the right-hand side of the matrix inequality

lim
n→∞

nE {(cn − c) (cn − c)ᵀ} ≥ I = lim
n→∞

nI−1F (c, n) (10)

valid for any estimates cn as a function of all the observations (x1,z0; ..., xn+1,zn)
available at time n for two cases:
Case a) {un}n=0,1,... is a stationary sequence of independent random vari-

ables with Laplace distribution

pu (x) =
1

a
exp

{
−|x|
a

}
, a = 2;

and {ξn}n=0,1,... is a stationary sequence of independent random variables
with Gaussian distribution

pξ (x) =
1√
2σ

exp

{
−x

2

2σ

}
, σ = 1;

Case b) {un}n=0,1,... is a stationary sequence of independent random vari-
ables with Gaussian distribution

pξ (x) =
1√
2σ

exp

{
−x

2

2σ

}
, σ = 1;

and {ξn}n=0,1,... is a stationary sequence of independent random variables
with Laplace distribution

pu (x) =
1

2a
exp

{
−|x|
a

}
, a = 2;
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Remark: Simulations are not required, only numerical calculation of the infor-
mation low-bounds.

Hint (help): use the following result.

Theorem 3 If in the model (9) with i.i.d. (independent identically distributed)
centered "noise" sequence {ξn} the generalized inputs {zn} satisfy the following
conditions

1) "strong law of large number " (SLNL) for {zn}∥∥∥∥ 1

n

n∑
t=0
{ztzᵀt } −

1

n

n∑
t=0
E {ztzᵀt }

∥∥∥∥ a.s.→
n→∞

0 (11)

2) the convergence of "averaged" inputs covariation

1

n

n∑
t=0
E {ztzᵀt } →

n→∞
R > 0 (12)

3) zn (under a fixed prehistory zn−1 := (z1, ..., zn−1) and fixed xn) does not
depend on c, that is,

∇c ln pzn
(
vzn | xn, zt−1, c

)
= 0 (n = 1, ...)

then the information bound under the regular data yn :=
(
xᵀn+1, z

ᵀ
n

)ᵀ ∈
R1+K is

I = lim
n→∞

nI−1F (c, n) = R−1I−1F (pξ) (13)

where

IF (pξ) := E
{[

(ln pξ (ξ))
′]2}

=
∫

v∈R

[
d

dv
pξ (v)

]2
pξ (v)

dv (14)

Fisher information is

a) for Gaussian noise ξn : IF (pξ) = σ−2, E
{
ξ2t
}

= σ2,

b) for Laplace noise ξn : IF (pξ) = a−2, E
{
ξ2t
}

= 2a2.

To solve the problem it is suffi cient to calculate

R = lim
n→∞

1

n

n∑
t=0

E {ztzᵀt } = lim
n→∞

1

n

n∑
t=0

[
E
{
x2t
}

E {xtut}
E {utxt} E

{
u2t
} ]

.
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Exercise 3
Recurrent version of the Maximum Likelihood Estimating Procedure:

cn = cn−1 − ΓnI
−1
F (pξ) zn

d

dv
ln pξ

(
xn+1 − cᵀn−1zn

)
Γn+1 = Γn −

Γnzn+1z
ᵀ
n+1Γn

1 + zᵀn+1Γnzn+1
, n ≥ n0

cn0 = Z−1n0 Vn0 , Γn0 =

(
n0∑
t=0

ztz
ᵀ
t

)−1
= Z−1n0

(15)

If for the scalar model (9) the specific conditions hold, then the procedure
(15) is asymptotically effi cient (the best one) under any regular (not only
Gaussian) i.i.d. noise in the dynamics of the system.

Calculate and prepare the corresponding the best nonlinear transformations

ϕ (v) = ϕ∗ (v) := −I−1F (pξ)
d

dv
ln pξ (v) (16)

(in this case I−1F (pξ) = I−1F (pξ) is a scalar) for

a) Laplace noise density

pξ (v) =
1

2a
exp

{
−|v|
a

}
, a = 1; IF (pξ) = a−2

b) Cos2 noise density

pξ (v) =

{ π

a
cos2

( π
2a

(v − c)
)

for |v − c| ≤ a
0 for |v − c| > a

]
, a = 1, IF (pξ) =

(π
a

)2
Take c = 0.

Exercise 4
Consider the following system

y(k) = 0.85y(k − 1) + 2u(k) + η(k),
y(0) = 3, η(0) = ξ(0) = 0,

η(k) = −0.3η(k − 1) + ξ(k) + 0.8ξ(k − 1),
u(k) = sin(0.2k),

 (17)

with ξ as an independent random sequence having the Logistic distribution

pξ (v | µ, σ) =

exp

{
v − µ
σ

}
σ

(
1 + exp

{
v − µ
σ

})2 , −∞ < x <∞ (18)
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where µ ∈ (−∞,∞) is mean value and σ which is a scalar parameter. For
simulation take

µ = 0, σ = 1.

The system (17) can be rewritten as follows

y(k) = z(k)>c+ η(k), k = 1, 2, ...

η(k) = H(q−1)ξ(k),

H(q−1) =
1 + 0.8q−1

1 + 0.3q−1
, q−1x (k) := x (k − 1)

 (19)

with

z(k) =

(
y(k − 1)
u(k)

)
, c :=

(
0.85

2

)
.

The whitening process is then given by

ỹ(k) = H−1(q−1)y(k), z̃(k) = H−1(q−1)z(k),

or in the extended form,

ỹ(k) + 0.8 ỹ(k − 1) = y(k) + 0.3y(k − 1), ỹ(0) = y(0),
z̃(k) + 0.8 z̃(k − 1) = z(k) + 0.3z(k − 1), z̃(0) = z(0),

where the "inverse filter" has the transfer function

H−1(q−1) =
1 + 0.3q−1

1 + 0.8q−1
.

The recursive WLSM (Whitening-Least-Square-Method) algorithm is

cn = cn−1 − I−1F,ξΓnz̃n
p′ξ (v)

pξ (v)
|v=ỹn−z̃ᵀncn−1 ,

Γn = Γn−1 −
Γn−1z̃nz̃

ᵀ
nΓn−1

1 + z̃ᵀnΓn−1z̃n
, n = 1, 2, ..., Γ(0) = 105.

 (20)

Here we need to calculare the Fisher Information IF,ξ. Take c(0) = 2.
Task: To simulate this identification WLSM-process with whiten-

ing and without, and demonstrate that LSM without whitening does
not work, using Matlab for generating the Logistic distribution:

pd = makedist(’Logistic’,’mu’,mu,’sigma’,sigma),

and

pd = fitdist(x,’Logistic’).
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Exercise 5 (Recurrent Residual Method (RRM))
Consider the plant

xn+1 = axn + bun + ξn + dξn−1,
xn, un, ξn ∈ R1, n = 0, 1, ....,
n = 0 : x0 = 0, ξ−1 = 0.

 (21)

Problem: estimate numerically parameters c = (a, b, d)
ᵀ
, using the algorith

cn = cn−1 − Γnzn
(
xn+1 − cᵀn−1zn

)
= cn−1 − Γnznεn+1,

Γn+1 = Γn −
Γnzn+1z

ᵀ
n+1Γn

1 + zᵀn+1Γnzn+1
, n ≥ n0,

cn0 = Z−1n0 Vn0 , Γn0 =

(
n0∑
t=0

ztz
ᵀ
t

)−1
= Z−1n0 ,

(22)

where
zn = (xn, un, εn)

ᵀ
, (23)

with the sequence {εn} generated by the recurrency

εn+1 = xn+1 − cᵀn−1zn,
n = 1, 2, ...; ε1 = 0.

(24)

Here ξn is the Standard Gaussian random value (E {ξn} = 0, E
{
ξ2n
}

= σ2) and
real values (used for simulations) of the parameters are:

a = 0.5, b = −1, d = −0.7.

The input un is
un = 0.6 sin (0.1n) .

Present the figures with cn = (an, bn, dn)
ᵀ and ∆n = εn − ξn which should

satisfy
∆n

a.s.→
n→∞

0.

Exercise 6 (Huber’s robust identifiers)
In the case of dynamic autoregression model (ARX-model) where the gen-

eralized inputs are dependent on the state of the system, the matrix R depends
on pξ too, and therefore, we deal with the complete problem (??), namely, we
need to calculate

sup
pξ∈P

[IF,ξ (pξ)R (pξ)]
−1 (25)
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and to find the worth distribution p∗ξ within the considered class P. For the
AR-model

yn+1 =
La∑
s=0

asyn−s + ξn = cᵀvn + ξn

cᵀ = (a0, ..., aLa) , vᵀn = (yn, yn−1, ..., yn−La)

we have
1

n

n∑
t=0

E {vtvᵀt } → R

where R satisfies
R = ARA+ σ2Ξ0

with

A =

∥∥∥∥∥∥∥∥∥∥∥

a0 a1 · · · · · · aLa
1 0 · · · · · · 0
0 1 0 · · · 0

0 · · · . . . 0 0
0 · · · 0 1 0

∥∥∥∥∥∥∥∥∥∥∥
, Ξ0 :=

∥∥∥∥∥∥∥∥∥∥∥

1 0 · · · · · · 0
0 0 · · · · · · 0
0 0 0 · · · 0

0 · · · . . . 0 0
0 · · · 0 0 0

∥∥∥∥∥∥∥∥∥∥∥
Obviously, R can be represented as

R =σ2R0,

where R0 is the solution of

R = ARA+ Ξ0

so that the problem (25) is reduced to

sup
pξ∈P

[
σ2 (pξ) IF (pξ)

]−1
or equivalently, to

inf
pξ∈P

[
σ2 (pξ) IF (pξ)

]
(26)

Problem: to design the asymptotically robust optimal identification algo-
rithm in the format

cn = cn−1 − ΓnvnI
−1
F

(
p∗ξ

) d

dv
ln p∗ξ (v) |v=xn+1−cᵀn−1vn ,

Γn+1 = Γn −
Γnvn+1v

ᵀ
n+1Γn

1 + vᵀn+1Γnvn+1
, n ≥ n0,

cn0 = Z−1n0 Vn0 , Γn0 =

(
n0∑
t=0

ztz
ᵀ
t

)−1
= Z−1n0 ,

(27)
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where
p∗ξ(v) = arg inf

pξ∈P

[
σ2 (pξ) IF (pξ)

]
,

for the AR model

xn+1 = a0xn + a1xn−1 + ξn,

xn, ξn ∈ R1, n = 0, 1, ...,

a0 = 0.5, a1 = 0.3, x0 = −1, x−1 = 0


with noise ξn from the class Class PAR2 (containing all centered distributions
with a variance not less than a given value):

PAR2 :=

{
pξ :

∫
R
x2pξ (x) dx ≥ σ20

}
. (28)

and in the same time from the class Class P1 (of all symmetric distributions
nonsingular in the point x = 0):

P1 :=

{
pξ : pξ (0) ≥ 1

2a
> 0

}
, (29)

that is
pξ ∈ PAR2 ∩ P1.

Hint:

Lemma 4 (on the class PAR2 )

p∗ξ (x) = arg inf
pξ∈PAR2 :σ2(pξ)=σ20

IF (pξ) , (30)

that is, the worth on PAR2 distribution density p∗ξ (x) coincides with the worth
distribution density on the classes Pi characterizing distribution uncertainties
for static (R-models) provided that

σ2
(
p∗ξ (x)

)
= σ20. (31)

Proof. It follows directly from the inequality

σ2 (pξ) IF (pξ) ≥ σ20IF (pξ) .

Lemma 5 (on the class P1)

p∗ξ (x) = arg inf
pξ∈P1

IF (pξ) =
1

2a
exp

{
−|x|
a

}
, (32)

that is, the worth on P1 distribution density is the Laplace one given by (32).
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Any numerical simulations are not required! Only you need to
give the analitical formula for

I−1F
(
p∗ξ
) d
dv

ln p∗ξ (v)

in the algorithm (27).

Exercise 7 (Kalman’s filtering)
Consider the stochastic system

dx (t) = [Ax(t) + b(t)] dt+ ΞdWx(t), x(0) = x0,

dy(t) = cᵀx(t)dt+ rdWy(t), r > 0,
(33)

where Wx(t) and Wy(t) are standard (with unite variance) independent Wiener
processes.
For the simulation in Simulink here may be used the, so-called, engineering

presentation of this system as

ẋ (t) = Ax(t) + b(t) + σξx (t) , x(0) = x0,

ẏ(t) = cᵀx(t) + rξy (t) , r > 0,

where ξx (t) and ξy (t) are associated gaussian white noises (with zero mean and
variance equal 1), namely,

ξx (t) ∼ d

dt
Wx(t), ξy (t) ∼ d

dt
Wy(t)

(which do not exist in rigorous mathematical sense).
To estimate the current states x̂ (t) let us apply the Kalman filter

dx̂ (t) = [Ax̂ (t) + b(t)] dt+ L (t) [dyt (t)− cᵀx̂ (t) dt] , x̂0 is fixed. (34)

that In the engineering interpretation it looks as

d

dt
x̂ (t) = Ax̂ (t) + b(t) + L (t)

[
d

dt
yt (t)− cᵀx̂ (t)

]
, x̂0 is fixed. (35)

We assume that
d

dt
yt (t) is available!

Here
L (t) = L∗ (t) := r−2P (t) c, (36)

where
P (t) = E {∆x (t) ∆ᵀx (t)} (37)
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satisfies the following differential Riccati equation

Ṗ (t) = AP (t) + P (t)Aᵀ + ΞΞᵀ − r−2P (t) ccᵀP (t) ,

P (0) = E {∆x (0) ∆ᵀx (0)}
(38)

For simulation take

x (t) ∈ R2, A =

[
−1 1
0 −2

]
, Ξ = 0.5

[
1 0
0 1

]
, r = 0.9,

x (0) =

(
1
−1

)
, b(t) = 0.6

(
sin(0.5t)
cos(0.5t)

)
, P (0) =

[
0 0
0 0

]
.

To analyze 3 situations:

1) c =

(
1
−1

)
, 2) c =

(
1
0

)
, 3) c =

(
0
1

)
and for each of them to draw the pictures

x̂ (t) =

(
x̂1 (t)
x̂2 (t)

)
, x (t) =

(
x1 (t)
x2 (t)

)
(x̂i (t) and xi (t) in the same graphic) and

tr {P (t)} = E
{
‖∆x (t)‖2

}
.
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