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Model description and problem setting

Here we will deal with the construction of a feedback, which
designing is very close to the ISM approach, together with the,
so-called, Averaged Sub-Gradient (ASG) Technique.
Consider the dynamic model of a Lagrangian mechanical system with
n-degrees of freedom in the standard form given by the following set
of di¤erential equations:

D (q (t)) q̈ (t) + C (q (t) , q̇ (t)) q̇ (t) + G (q (t))

= τ (t) + ϑ (t) ,
(1)

where q (t) , q̇ (t) 2 Rn are the state vectors (generalized coordinates
and their velocities, t � 0), τ (t) 2 Rn is a vector of external torques
(control) acting to the mechanical system, and ϑ (t) 2 Rn is the
disturbance (or uncertainty) vector.
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Model of tracking error

If we wish to resolve the tracking problem for the given nominal trajectory
q�(t), then we can represent the dynamics of the controlled plant in
deviation coordinates δ (t) := q (t)� q�(t) as follows

D̃ (δ (t)) δ̈ (t) = τ (t) + ϑ (t)� C̃
�
δ (t) , δ̇ (t)

�
δ̇ (t)� G̃ (δ (t)) (2)

with
D̃ (δ) := D (δ+ q�) ,

C̃
�
δ, δ̇
�

:= C
�
δ+ q�, δ̇+ q̇�

�
,

G̃ (δ) := G (δ+ q�) .
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Model of tracking error

Notice that the deviation dynamics (2) may be represented as (omitting
the time-argument)

δ̈ = D̃�1 (δ) τ + D̃�1 (δ) ξ, (3)

or, equivalently, as

δ1 := δ,

δ̇1 = δ2,
δ̇2 = D̃�1 (δ1) τ + D̃�1 (δ1) ξ.

9>>=>>; (4)
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Accepted assumptions

A1. The vector of generalized coordinate q(t) and its derivative q̇(t)
are measurable on-line during the process.

A2. The matrix D (q) is supposed to be known and invertible (the
usual property of any mechanical system).

A3. The uncertain term

ξ (t) := ϑ (t)� C̃
�
δ (t) , δ̇ (t)

�
δ̇ (t)� G̃ (δ (t)) (5)

is admitted to be unknown and unmeasurable, but is bounded as

kξ (t)k � c + c0 kδ (t)k+ c1


δ̇ (t)



 , c , c0, c1 � 0. (6)
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Accepted assumptions

A4. The loss function F : Rn ! R1, characterizing the quality of a
controlled process, is assumed to be unknown, convex (not
obligatory, strongly convex), di¤erentiable for almost all δ 2 Rn
(the Radamacher theorem) and its sub-gradient a (δ) is supposed
to be measurable and bounded at any point δ1, that is,

ka (δ (t))k � dg < ∞,

and the reaction a (δ) is available for any argument δ 2 Rn .
A5. The minimum of the loss function F (δ) exists, namely,

F � = min
δ2Rn

F (δ) > �∞.
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Problem formulation

Problem
Under the assumptions A1-A3 we need to design a control strategy τ (t)
as a feedback τ (δ (�)), which provides the functional convergence of the
cost function F (δ (t)) to its minimum value F �, in the presence of
uncertainties ξ (t), that is, to guarantee

F (δ (t)) �!
t�!∞

inf
δ2Rn

F (δ) = F �, (7)

supposing that the current sub-gradient a(δ (t)) of the convex function
F (δ), to be optimized, is available on-line.

Alexander Poznyak (CINVESTAV-México) Septiembre - December 2023 8 / 22



Examples of loss-functions

The convex (not obligatory strongly) loss function F : Rn ! R1 de�nes
the quality of control actions fτ (t)gt�0 in the point δ (t). For example,
the following two functions belong to the considered class of the convex
loss functions to be optimized:

1

F (δ) =
n

∑
i=1
jδi j , ai (δ) = sign (δi ) ,

2

F (δ) =
n
∑
i=1
jδi j+ε , jz j+ε :=

8<:
z � ε if z � ε
�z � ε if z � �ε
0 if jz j < ε

,

ai (δi ) =

8<:
1 if δi � ε
�1 if δi � �ε

(�1, 1) if jδi j < ε
= sign (jδj � ε) .

In both these examples F � = F (0) = 0.
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Desired dynamics and its properties
Auxilary sliding variable

De�ne the vector function s (t)2Rn, which from now on and throughout
this lecture will be referred to as "sliding variable":

s (t) = δ̇ (t) +
δ (t) + η

t + θ
+ G̃ (t) , η = const2Rn,

G̃ (t) :=
1

t + θ

tR
τ=t0

a (δ (τ)) dτ, θ > 0,

a (δ1 (τ)) 2 ∂F (δ1 (τ))

9>>>>>>>>=>>>>>>>>;
(8)

Here δ (t) := q (t)� q�(t)2Rn, η is a constant vector and G̃ (t) is the
averaged subgradient (ASG) of the function F (δ (t)) (7). Note that the
sliding variable s (t) contains the integral term which is physically
measurable.
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Desired dynamics

De�ne the desired ASG dynamics as

s (t) = ṡ (t) = 0, t � t0, (9)

which corresponds exactly to the situation when the sliding variable s (t) is equal
to zero for all t � t0. Below we will show why the dynamic (9) is called a
desired. Since

(t + θ) s (t) = (t + θ) δ̇ (t) + δ (t) + η = ζ (t) ,
ζ̇ (t) = �a (δ (t)) , ζ (t0) = 0,

)
(10)

in the desired regime (9) we have

(t + θ) δ̇ (t) + δ (t) + η = ζ (t) , t � t0 � 0,
t0 is the moment when the desired dynamics may begin.

�
(11)
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Why this regime is referred to as "desired" ?

Lemma
For the variable δ (t) , satisfying the ideal dynamics (9), with any θ > 0
and η, for all t � t0 � 0 the following inequality is guaranteed:

F (δ (t))� F � � Φ (t0)
t + θ

!
t!∞

0, (12)

where

Φ (t0) = Φ (δ (t0) , θ, η) := (t0 + θ) F (δ (t0))� F � + 1
2 kδ� � ηk2 ,

(13)
and

δ� 2 Arg inf
inf δ2Rn

:

F (δ)

(δ� may be not unique).
(14)
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Proof of Lemma on Functional convergence (1)

Proof.
De�ning µ (t) := t + θ we have

d
dt

�
1
2
kζ (t)k2 � ζ| (t) δ�

�
= ζ̇

|
(t) (ζ (t)� δ�) =

�a| (δ (t))
�
µ (t) δ̇ (t) + δ (t) + η � δ�

�
=

�a| (δ (t)) (δ (t)� δ�)� a| (δ (t))
�
µ (t) δ̇ (t) + η

�
.

Using the inequality (δ� δ�)T a (δ) � F (δ)� F �, valid for convex (not
obligatory stongly convex) functions in the �rst term on the right side, and
applying the identity aT (δ (t)) δ̇ (t) = d

dt [F (δ (t))� F �] , we get

d
dt

�
1
2
kζ (t)k2 � ζ| (t) δ�

�
� � [F (δ (t))� F �]

�µ (t)
d
dt
[F (δ (t))� F �]� aT (δ (t)) η.
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Proof of Lemma on Functional convergence (2)

Proof.
Then, integrating the last inequality in the interval [t0, t] and applying the
formula of integration by parts, we derive

tR
τ=t0

[F (δ (τ))� F �] dτ � 1
2

�
kζ (t0)k2 � kζ (t)k2

�
+

(ζ (t)� ζ (t0))
T δ� � (µ (t) [F (δ (t))� F �])tt0 +

tR
τ=t0

[F (δ (τ))� F �] µ̇ (τ) dτ �
"

tR
τ=t0

a| (δ (τ)) dτ

#
η.
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Proof of Lemma on Functional convergence (3)

Proof.
Since µ̇τ = 1, the above inequality becomes

µ (t) [F (δ (t))� F �] � µ (t0) [F (δ (t0))� F �] +
1
2

�
kζ (t0)k2 � kζ (t)k2

�
+ (ζ (t)� ζ (t0))

| δ� + ζ| (t) η =

(t0 + θ) [F (δ (t0))� F �] +
�
1
2 kζ (t0)k2 � ζ| (t0) δ�

�
+

1
2 kδ� � ηk2 � 1

2

h
kζ (t)k2 � 2 ζ| (t) (δ� � η) + kδ� � ηk2

i
| {z }

kζ(t)�(δ��η)k2

� (t0 + θ) [F (δ (t0))� F �]� 1
2 kζ (t)� (δ� � η)k2 +�

1
2 kζ (t0)k2 � ζ| (t0) δ�

�
+ 1

2 kδ� � ηk2 � Φt0 ,

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
(15)

from which we obtain (13). Lemma is proved.
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Important comment (1)

Remark
The parameter η will be chosen below in such a way that the desired
optimization regime starts from the beginning of the process, namely,
when, t0 = 0.
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Important comment (2)

Corollary
In the partial case when

δ� = 0, t0 = 0 and F � = 0

the formula (13) becomes

Φ (t0) = Φ (δ (t0) , θ, η) := θF (δ (0)) +
1
2
kηk2 . (16)
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Main theorem on ASG robust controller

Theorem
Under assumptions 1-5 the ISM robust controller

τ (t) = D̃ (δ (t)) [�ktSIGN (s (t)) + ucomp (t)] ,
ucomp (t) = �prealit ,

kt =


D̃�1 (δ (t))

 �c + c0 kδ (t)k+ c1



δ̇ (t)


�+ ρ0, ρ0 > 0,

9=;
(17)

where

prealit :=
1

t + θ

�
δ̇ (t)� δ (t) + η

t + θ
� G̃ (t) + a (δ (t))

�
(18)

with
η = �θδ2,0 � δ1,0 (19)

guarantees the functional convergence (12) from t0 = 0.
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Proof of Main Theorem (1)

Proof.
In view of the assumption A2 we have

δ (t) := q (t)� q� (t) , δ̇ (t) = q̇ (t)� q̇� (t) ,
δ̈ (t) = D̃�1 (δ (t)) τ (t) + D̃�1 (δ (t)) ξ (t) .

�
For the Lyapunov function V (s) = 1

2 s
|s we have

V̇ (s (t)) = s| (t) ṡ (t) =

s| (t)
�

δ̈ (t) + δ̇(t)
t+θ �

δ(t)+η

(t+θ)2
� 1

t+θ G̃ (t) +
1
t+θa (δ (t))

�
=

s| (t)
�
D̃�1 (δ (t)) τ (t) + D̃�1 (δ (t)) ξ (t)

�
+

s| (t)
�

1
t+θ

�
δ̇ (t)� δ(t)+η

t+θ � G̃ (t) + a (δ (t))
��
=

s| (t) prealit +s| (t) D̃�1 (δ (t)) τ (t) +s| (t) D̃�1 (δ (t)) ξ (t) .

9>>>>>>=>>>>>>;
(20)
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Proof of Main Theorem (2)

Proof.
Selecting τ as in (17) for the second term in (20) we get

V̇ (st ) = �kts| (t) SIGN (s (t)) + s| (t) D̃�1 (δ (t)) ξ (t)

� �kt
n

∑
i=1
jsi (t)j+ ks (t)k



D̃�1 (δ (t))

 kξ (t)k

9>>=>>; (21)
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Proof of Main Theorem (3)

Proof.

Taking into account that
n

∑
i=1
jsi (t)j � ks (t)k and, in view of (6) and

(21), we derive

V̇ (s (t)) � -kt ks (t)k+ ks (t)k


D̃�1 (δ (t))

 �c+c0 kδ (t)k+c1



δ̇ (t)


�

= �ρ0 ks (t)k = �
p
2ρ0
p
V (s (t)),

implying 2
�p

V (s (t))�
p
V (s (t0))

�
� �

p
2ρ0t and

0 �
q
V (s (t)) �

q
V (s (t0))�

ρ0p
2
t,

which leads to the conclusion that for all t � treach:=
1
ρ0

p
2V (st0)=

kst0k
ρ0

we have that V (s (t))=0 and s (t)=0.

Alexander Poznyak (CINVESTAV-México) Septiembre - December 2023 21 / 22



Proof of Main Theorem (4)

Proof.
To make the reaching time treach = 0 it is su¢ cient to gurantee that
st0=0 = 0. But since by (10)

(t + θ) s (t) = (t + θ) δ̇ (t) + δ (t) + η = ζ (t) ,
(t0 + θ) s (t0) = (t0 + θ) δ̇ (t0) + δ (t0) + η = ζ (t0)

st0 = δ̇t0 +
δt0 + η

t0 + θ
,

we need to ful�ll the condition st0=0 = δ̇t0=0 +
δt0=0+η

θ = 0, which is
possible if take η as in (19), providing

treach =
kst0=0k

ρ0
= 0.

Theorem is proven.
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