Lecture 11: Average Sub-Gradient Method as a Version of Integral Sliding Mode Control
 Plan of presentation

- Where it was published
- Model description and problem setting
- Accepted assumptions
- Problem formulation
- Examples of loss-functions
- Desired regime
- Functional convergence
- Main theorem on ASG robust controller

Where it was published

(1) Poznyak, A.S.; Nazin A.V.; Alazki H., Integral Sliding Mode Convex Optimization in Uncertain Lagrangian Systems Driven by PMDC Motors: Averaged Subgradient Approach. IEEE Transactions on Automatic Control, 2021, 66(9), 4267-4273.
(2) Alexander Nazin, Hussain Alazki, and Alexander Poznyak, Robust Tracking as Constrained Optimization by Uncertain Dynamic Plant: Mirror Descent Method and ASG - Version of Integral Sliding Mode Control. Mathematics 2023, MDPI (to be published).
(3) A.V. Nazin and A. S. Poznyak, Non-quadratic proxy functions in Mirror Descent Method applied to designing of robust controllers for nonlinear dynamic systems with uncertainty. Computational Mathematics and Mathematical Physics, Springer (to be published).

Model description and problem setting

- Here we will deal with the construction of a feedback, which designing is very close to the ISM approach, together with the, so-called, Averaged Sub-Gradient (ASG) Technique.
- Consider the dynamic model of a Lagrangian mechanical system with n-degrees of freedom in the standard form given by the following set of differential equations:

$$
\begin{aligned}
D(q(t)) \ddot{q}(t)+ & C(q(t), \dot{q}(t)) \dot{q}(t)+G(q(t)) \\
& =\tau(t)+\vartheta(t)
\end{aligned}
$$

where $q(t), \dot{q}(t) \in R^{n}$ are the state vectors (generalized coordinates and their velocities, $t \geq 0$), $\tau(t) \in R^{n}$ is a vector of external torques (control) acting to the mechanical system, and $\vartheta(t) \in R^{n}$ is the disturbance (or uncertainty) vector.

Model of tracking error

If we wish to resolve the tracking problem for the given nominal trajectory $q^{*}(t)$, then we can represent the dynamics of the controlled plant in deviation coordinates $\delta(t):=q(t)-q^{*}(t)$ as follows

$$
\begin{equation*}
\tilde{D}(\delta(t)) \ddot{\delta}(t)=\tau(t)+\vartheta(t)-\tilde{C}(\delta(t), \dot{\delta}(t)) \dot{\delta}(t)-\tilde{G}(\delta(t)) \tag{2}
\end{equation*}
$$

with

$$
\begin{aligned}
\tilde{D}(\delta) & :=D\left(\delta+q^{*}\right) \\
\tilde{C}(\delta, \dot{\delta}) & :=C\left(\delta+q^{*}, \dot{\delta}+\dot{q}^{*}\right), \\
\tilde{G}(\delta) & :=G\left(\delta+q^{*}\right)
\end{aligned}
$$

Model of tracking error

Notice that the deviation dynamics (2) may be represented as (omitting the time-argument)

$$
\begin{equation*}
\ddot{\delta}=\tilde{D}^{-1}(\delta) \tau+\tilde{D}^{-1}(\delta) \xi \tag{3}
\end{equation*}
$$

or, equivalently, as

$$
\left.\begin{array}{c}
\delta_{1}:=\delta \tag{4}\\
\dot{\delta}_{1}=\delta_{2} \\
\dot{\delta}_{2}=\tilde{D}^{-1}\left(\delta_{1}\right) \tau+\tilde{D}^{-1}\left(\delta_{1}\right) \xi
\end{array}\right\}
$$

Accepted assumptions

A1. The vector of generalized coordinate $q(t)$ and its derivative $\dot{q}(t)$ are measurable on-line during the process.
A2. The matrix $D(q)$ is supposed to be known and invertible (the usual property of any mechanical system).
A3. The uncertain term

$$
\begin{equation*}
\tilde{\xi}(t):=\vartheta(t)-\tilde{C}(\delta(t), \dot{\delta}(t)) \dot{\delta}(t)-\tilde{G}(\delta(t)) \tag{5}
\end{equation*}
$$

is admitted to be unknown and unmeasurable, but is bounded as

$$
\begin{equation*}
\|\xi(t)\| \leq c+c_{0}\|\delta(t)\|+c_{1}\|\dot{\delta}(t)\|, c, c_{0}, c_{1} \geq 0 \tag{6}
\end{equation*}
$$

Accepted assumptions

A4. The loss function $F: R^{n} \rightarrow R^{1}$, characterizing the quality of a controlled process, is assumed to be unknown, convex (not obligatory, strongly convex), differentiable for almost all $\delta \in R^{n}$ (the Radamacher theorem) and its sub-gradient $a(\delta)$ is supposed to be measurable and bounded at any point δ_{1}, that is,

$$
\|a(\delta(t))\| \leq d_{g}<\infty
$$

and the reaction $a(\delta)$ is available for any argument $\delta \in R^{n}$.
A5. The minimum of the loss function $F(\delta)$ exists, namely,

$$
F^{*}=\min _{\delta \in \mathbb{R}^{n}} F(\delta)>-\infty
$$

Problem formulation

Problem

Under the assumptions A1-A3 we need to design a control strategy $\tau(t)$ as a feedback $\tau(\delta(\cdot))$, which provides the functional convergence of the cost function $F(\delta(t))$ to its minimum value F^{*}, in the presence of uncertainties $\xi(t)$, that is, to guarantee

$$
\begin{equation*}
F(\delta(t)) \underset{t \longrightarrow \infty}{\longrightarrow} \inf _{\delta \in \mathbb{R}^{n}} F(\delta)=F^{*} \tag{7}
\end{equation*}
$$

supposing that the current sub-gradient $a(\delta(t))$ of the convex function $F(\delta)$, to be optimized, is available on-line.

Examples of loss-functions

The convex (not obligatory strongly) loss function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ defines the quality of control actions $\{\tau(t)\}_{t \geq 0}$ in the point $\delta(t)$. For example, the following two functions belong to the considered class of the convex loss functions to be optimized:
(1)

$$
F(\delta)=\sum_{i=1}^{n}\left|\delta_{i}\right|, a_{i}(\delta)=\operatorname{sign}\left(\delta_{i}\right)
$$

(2)

$$
\begin{gathered}
F(\delta)=\sum_{i=1}^{n}\left|\delta_{i}\right|_{\varepsilon}^{+}, \quad|z|_{\varepsilon}^{+}:=\left\{\begin{array}{ccc}
z-\varepsilon & \text { if } & z \geq \varepsilon \\
-z-\varepsilon & \text { if } & z \leq-\varepsilon \\
0 & \text { if } & |z|<\varepsilon
\end{array},\right. \\
a_{i}\left(\delta_{i}\right)=\left\{\begin{array}{cl}
1 & \text { if } \quad \delta_{i} \geq \varepsilon \\
-1 & \text { if } \quad \delta_{i} \leq-\varepsilon=\operatorname{sign}(|\delta|-\varepsilon) . \\
(-1,1) & \text { if } \quad\left|\delta_{i}\right|<\varepsilon
\end{array}\right.
\end{gathered}
$$

In both these examples $F^{*}=F(0)=0$.

Desired dynamics and its properties

Auxilary sliding variable

Define the vector function $s(t) \in \mathbb{R}^{n}$, which from now on and throughout this lecture will be referred to as "sliding variable":

$$
\begin{gather*}
s(t)=\dot{\delta}(t)+\frac{\delta(t)+\eta}{t+\theta}+\tilde{G}(t), \eta=\text { const } \in \mathbb{R}^{n} \\
\tilde{G}(t):=\frac{1}{t+\theta} \int_{\tau=t_{0}}^{t} a(\delta(\tau)) d \tau, \theta>0 \tag{8}\\
a\left(\delta_{1}(\tau)\right) \in \partial F\left(\delta_{1}(\tau)\right)
\end{gather*}
$$

Here $\delta(t):=q(t)-q^{*}(t) \in \mathbb{R}^{n}, \eta$ is a constant vector and $\tilde{G}(t)$ is the averaged subgradient (ASG) of the function $F(\delta(t))$ (7). Note that the sliding variable $s(t)$ contains the integral term which is physically measurable.

Desired dynamics

Define the desired ASG dynamics as

$$
\begin{equation*}
s(t)=\dot{s}(t)=0, t \geq t_{0} \tag{9}
\end{equation*}
$$

which corresponds exactly to the situation when the sliding variable $s(t)$ is equal to zero for all $t \geq t_{0}$. Below we will show why the dynamic (9) is called a desired. Since

$$
\begin{gather*}
(t+\theta) s(t)=(t+\theta) \dot{\delta}(t)+\delta(t)+\eta=\zeta(t), \tag{10}\\
\dot{\zeta}(t)=-a(\delta(t)), \zeta\left(t_{0}\right)=0
\end{gather*}
$$

in the desired regime (9) we have

$$
\left.\begin{array}{c}
\quad(t+\theta) \dot{\delta}(t)+\delta(t)+\eta=\zeta(t), \quad t \geq t_{0} \geq 0 \tag{11}\\
t_{0} \text { is the moment when the desired dynamics may begin. }
\end{array}\right\}
$$

Why this regime is referred to as "desired" ?

Lemma

For the variable $\delta(t)$, satisfying the ideal dynamics (9), with any $\theta>0$ and η, for all $t \geq t_{0} \geq 0$ the following inequality is guaranteed:

$$
\begin{equation*}
F(\delta(t))-F^{*} \leq \frac{\Phi\left(t_{0}\right)}{t+\theta} \underset{t \rightarrow \infty}{\rightarrow} 0 \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi\left(t_{0}\right)=\Phi\left(\delta\left(t_{0}\right), \theta, \eta\right):=\left(t_{0}+\theta\right) F\left(\delta\left(t_{0}\right)\right)-F^{*}+\frac{1}{2}\left\|\delta^{*}-\eta\right\|^{2} \tag{13}
\end{equation*}
$$

and

$$
\begin{align*}
& \delta^{*} \in \operatorname{Arg}_{\inf \inf _{\delta \in \mathbb{R}^{n}} F(\delta)}^{\left(\delta^{*} \text { may be not unique }\right) .} \tag{14}
\end{align*}
$$

Proof of Lemma on Functional convergence (1)

Proof.

Defining $\mu(t):=t+\theta$ we have

$$
\begin{aligned}
& \frac{d}{d t}\left[\frac{1}{2}\|\zeta(t)\|^{2}-\zeta^{\top}(t) \delta^{*}\right]=\dot{\zeta}^{\top}(t)\left(\zeta(t)-\delta^{*}\right)= \\
& -a^{\top}(\delta(t))\left[\mu(t) \dot{\delta}(t)+\delta(t)+\eta-\delta^{*}\right]= \\
& -a^{\top}(\delta(t))\left(\delta(t)-\delta^{*}\right)-a^{\top}(\delta(t))(\mu(t) \dot{\delta}(t)+\eta)
\end{aligned}
$$

Using the inequality $\left(\delta-\delta^{*}\right)^{T} a(\delta) \geq F(\delta)-F^{*}$, valid for convex (not obligatory stongly convex) functions in the first term on the right side, and applying the identity $a^{T}(\delta(t)) \dot{\delta}(t)=\frac{d}{d t}\left[F(\delta(t))-F^{*}\right]$, we get

$$
\begin{aligned}
& \frac{d}{d t} {\left[\frac{1}{2}\|\zeta(t)\|^{2}-\zeta^{\top}(t) \delta^{*}\right] \leq-\left[F(\delta(t))-F^{*}\right] } \\
&-\mu(t) \frac{d}{d t}\left[F(\delta(t))-F^{*}\right]-a^{T}(\delta(t)) \eta
\end{aligned}
$$

Proof of Lemma on Functional convergence (2)

Proof.

Then, integrating the last inequality in the interval $\left[t_{0}, t\right]$ and applying the formula of integration by parts, we derive

$$
\begin{aligned}
& \int_{\tau=t_{0}}^{t}\left[F(\delta(\tau))-F^{*}\right] d \tau \leq \frac{1}{2}\left(\left\|\zeta\left(t_{0}\right)\right\|^{2}-\|\zeta(t)\|^{2}\right)+ \\
& \quad\left(\zeta(t)-\zeta\left(t_{0}\right)\right)^{T} \delta^{*}-\left(\mu(t)\left[F(\delta(t))-F^{*}\right]\right)_{t_{0}}^{t}+ \\
& \int_{\tau=t_{0}}^{t}\left[F(\delta(\tau))-F^{*}\right] \dot{\mu}(\tau) d \tau-\left[\int_{\tau=t_{0}}^{t} a^{\top}(\delta(\tau)) d \tau\right] \eta .
\end{aligned}
$$

Proof of Lemma on Functional convergence (3)

Proof.

Since $\dot{\mu}_{\tau}=1$, the above inequality becomes

$$
\begin{gather*}
\mu(t)\left[F(\delta(t))-F^{*}\right] \leq \mu\left(t_{0}\right)\left[F\left(\delta\left(t_{0}\right)\right)-F^{*}\right]+ \\
\frac{1}{2}\left(\left\|\zeta\left(t_{0}\right)\right\|^{2}-\|\zeta(t)\|^{2}\right)+\left(\zeta(t)-\zeta\left(t_{0}\right)\right)^{\top} \delta^{*}+\zeta^{\top}(t) \eta= \\
\left(t_{0}+\theta\right)\left[F\left(\delta\left(t_{0}\right)\right)-F^{*}\right]+\left(\frac{1}{2}\left\|\zeta\left(t_{0}\right)\right\|^{2}-\zeta^{\top}\left(t_{0}\right) \delta^{*}\right)+ \\
\frac{1}{2}\left\|\delta^{*}-\eta\right\|^{2}-\frac{1}{2} \underbrace{\left[\|\zeta(t)\|^{2}-2 \zeta^{\top}(t)\left(\delta^{*}-\eta\right)+\left\|\delta^{*}-\eta\right\|^{2}\right]}_{\left\|\zeta(t)-\left(\delta^{*}-\eta\right)\right\|^{2}} \tag{15}\\
\leq\left(t_{0}+\theta\right)\left[F\left(\delta\left(t_{0}\right)\right)-F^{*}\right]-\frac{1}{2}\left\|\zeta(t)-\left(\delta^{*}-\eta\right)\right\|^{2}+ \\
\left(\frac{1}{2}\left\|\zeta\left(t_{0}\right)\right\|^{2}-\zeta^{\top}\left(t_{0}\right) \delta^{*}\right)+\frac{1}{2}\left\|\delta^{*}-\eta\right\|^{2} \leq \Phi_{t_{0}},
\end{gather*}
$$

from which we obtain (13). Lemma is proved.

Important comment (1)

Remark

The parameter η will be chosen below in such a way that the desired optimization regime starts from the beginning of the process, namely, when, $t_{0}=0$.

Important comment (2)

Corollary

In the partial case when

$$
\delta^{*}=0, t_{0}=0 \text { and } F^{*}=0
$$

the formula (13) becomes

$$
\begin{equation*}
\Phi\left(t_{0}\right)=\Phi\left(\delta\left(t_{0}\right), \theta, \eta\right):=\theta F(\delta(0))+\frac{1}{2}\|\eta\|^{2} . \tag{16}
\end{equation*}
$$

Main theorem on ASG robust controller

Theorem

Under assumptions 1-5 the ISM robust controller

$$
\left.\begin{array}{c}
\tau(t)=\tilde{D}(\delta(t))\left[-k_{t} \operatorname{SIGN}(s(t))+u_{\text {comp }}(t)\right], \\
u_{\text {comp }}(t)=-p_{t}^{\text {reali }} \dot{ } \\
k_{t}=\left\|\tilde{D}^{-1}(\delta(t))\right\|\left(c+c_{0}\|\delta(t)\|+c_{1}\|\dot{\delta}(t)\|\right)+\rho_{0}, \rho_{0}>0, \tag{17}
\end{array}\right\}
$$

where

$$
\begin{equation*}
p_{t}^{\text {reali }}:=\frac{1}{t+\theta}\left(\dot{\delta}(t)-\frac{\delta(t)+\eta}{t+\theta}-\tilde{G}(t)+a(\delta(t))\right) \tag{18}
\end{equation*}
$$

with

$$
\begin{equation*}
\eta=-\theta \delta_{2,0}-\delta_{1,0} \tag{19}
\end{equation*}
$$

guarantees the functional convergence (12) from $t_{0}=0$.

Proof of Main Theorem (1)

Proof.

In view of the assumption A2 we have

$$
\left.\begin{array}{rl}
\delta(t) & :=q(t)-q^{*}(t), \dot{\delta}(t)=\dot{q}(t)-\dot{q}^{*}(t), \\
\ddot{\delta}(t) & =\tilde{D}^{-1}(\delta(t)) \tau(t)+\tilde{D}^{-1}(\delta(t)) \xi^{(}(t) .
\end{array}\right\}
$$

For the Lyapunov function $V(s)=\frac{1}{2} s^{\top} s$ we have

$$
\left.\begin{array}{c}
\dot{V}(s(t))=s^{\top}(t) \dot{s}(t)= \\
s^{\top}(t)\left(\ddot{\delta}(t)+\frac{\dot{\delta}(t)}{t+\theta}-\frac{\delta(t)+\eta}{(t+\theta)^{2}}-\frac{1}{t+\theta} \tilde{G}(t)+\frac{1}{t+\theta} a(\delta(t))\right)= \\
s^{\top}(t)\left(\tilde{D}^{-1}(\delta(t)) \tau(t)+\tilde{D}^{-1}(\delta(t)) \xi(t)\right)+ \\
s^{\top}(t)\left(\frac{1}{t+\theta}\left(\dot{\delta}(t)-\frac{\delta(t)+\eta}{t+\theta}-\tilde{G}(t)+a(\delta(t))\right)\right)= \\
s^{\top}(t) p_{t}^{\text {reali }}+s^{\top}(t) \tilde{D}^{-1}(\delta(t)) \tau(t)+s^{\top}(t) \tilde{D}^{-1}(\delta(t)) \xi(t) .
\end{array}\right\}
$$

Proof of Main Theorem (2)

Proof.

Selecting τ as in (17) for the second term in (20) we get

$$
\begin{align*}
& \dot{V}\left(s_{t}\right)=-k_{t} s^{\top}(t) \operatorname{SIGN}(s(t))+s^{\top}(t) \tilde{D}^{-1}(\delta(t)) \xi(t) \\
& \leq-k_{t} \sum_{i=1}^{n}\left|s_{i}(t)\right|+\|s(t)\|\left\|\tilde{D}^{-1}(\delta(t))\right\|\|\xi(t)\| \tag{21}
\end{align*}
$$

Proof of Main Theorem (3)

Proof.

Taking into account that $\sum_{i=1}^{n}\left|s_{i}(t)\right| \geq\|s(t)\|$ and, in view of (6) and
(21), we derive

$$
\begin{gathered}
\dot{V}(s(t)) \leq-k_{t}\|s(t)\|+\|s(t)\|\left\|\tilde{D}^{-1}(\delta(t))\right\|\left(c+c_{0}\|\delta(t)\|+c_{1}\|\dot{\delta}(t)\|\right) \\
=-\rho_{0}\|s(t)\|=-\sqrt{2} \rho_{0} \sqrt{V(s(t))}
\end{gathered}
$$

implying $2\left(\sqrt{V(s(t))}-\sqrt{V\left(s\left(t_{0}\right)\right)}\right) \leq-\sqrt{2} \rho_{0} t$ and

$$
0 \leq \sqrt{V(s(t))} \leq \sqrt{V\left(s\left(t_{0}\right)\right)}-\frac{\rho_{0}}{\sqrt{2}} t
$$

which leads to the conclusion that for all $t \geq t_{\text {reach }}:=\frac{1}{\rho_{0}} \sqrt{2 V\left(s_{t_{0}}\right)}=\frac{\left\|s_{t_{0}}\right\|}{\rho_{0}}$ we have that $V(s(t))=0$ and $s(t)=0$.

Proof of Main Theorem (4)

Proof.

To make the reaching time $t_{\text {reach }}=0$ it is sufficient to gurantee that $s_{t_{0}=0}=0$. But since by (10)

$$
\begin{aligned}
(t+\theta) s(t)= & (t+\theta) \dot{\delta}(t)+\delta(t)+\eta=\zeta(t) \\
\left(t_{0}+\theta\right) s\left(t_{0}\right)= & \left(t_{0}+\theta\right) \dot{\delta}\left(t_{0}\right)+\delta\left(t_{0}\right)+\eta=\zeta\left(t_{0}\right) \\
& s_{t_{0}}=\dot{\delta}_{t_{0}}+\frac{\delta_{t_{0}}+\eta}{t_{0}+\theta}
\end{aligned}
$$

we need to fulfill the condition $s_{t_{0}=0}=\dot{\delta}_{t_{0}=0}+\frac{\delta_{t_{0}=0}+\eta}{\theta}=0$, which is possible if take η as in (19), providing

$$
t_{\text {reach }}=\frac{\left\|s_{t_{0}=0}\right\|}{\rho_{0}}=0 .
$$

Theorem is proven.

