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ABSTRACT

This paper continues the study of the topological model of the support of a digital image published by
Kronheimer in 1992. There, he interpreted the generation of the support D of the image from a topological
space S by means of some ”discretization” as the construction of a quotient space ∆ of S, which represents
the set D and has a reasonable (non-discrete) topology. Under some conditions the space ∆ is an Alexandrov
space. Having in mind the practical example S = IRn and D = ZZn we speak of ”n-dimensional images”,
although there is no dimension on the space ∆. We define in this paper a so-called Alexandrov dimension for
arbitrary Alexandrov spaces. Under this definition an image which was sampled from a function defined on
IRn has dimension n. If the Alexandrov space ∆ is T0, then it corresponds to a canonical partially ordered
set (∆,≤). We prove, that in this case the Alexandrov dimension coincides with the height of (∆,≤).

1. Introduction

This work is motivated by recent studies of topological models of digital images. A digital image is a
function defined on a ”discrete” set D . Usually this digital image is produced by sampling a continuous
function defined on a topological space S [11]. We have in mind the example D = ZZ2 and S = IR2. The
relative topology on the subspace (ZZ2, τZZ2) of (IR2, τIR2) is discrete and so in order to deal with connectivity
and other topological properties of the image, a reasonable topology on D has to be constructed.

The first attempts to introduce topological concepts in D were those of Rosenfeld, Kak and others
[11] where they developed the theory of neighborhood graphs on D = ZZ2 and D = ZZ3. Based on graph
theory, combinatorics, and using some ideas of topology, this model was generalized to a theory of incidence
structures by Voss [14], which can be used to describe n-dimensional images, and involves the theory of
neighborhood structures developed by Klette and Voss [4]. On the other hand, using combinatorial topology
and homotopy theory, topological structures were constructed on neighborhood graphs by Kong et al for
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representing 2- and 3-dimensional images [6]. An other idea is the interpretation of D as cellular complex
and the use of algebraic topology (see papers [8] and [10]). During the past few years topological models
have been used to describe the structure on D. The Khalimsky topology on ZZ has been used succesfully
in this regard (see papers [5] and [7]), and in 1992 Kronheimer [9] described a model which treats D as an
open quotient of S. The basic idea of Kronheimer for modelling the support of the digital image consists of
two steps:

The first is the identification of the points i ∈ D with open disjoint sets Wi ⊆ S in such a way, that the
union of all Wi is dense in S. He calls the family of open sets {Wi} a fenestration of S. In our example of
the first paragraph we can identify each z ∈ ZZ2 with the unit open square in IR2, whose center is z.

The second step consists of constructing a decomposition space X of S, which contains the fenestration
used in the first step, and whose natural projection map is open. Such a decomposition X is called a grid
of S. It is clear that even for a fixed fenestration many grids can be obtained. For this reason Kronheimer
imposes a minimality condition on that grid, which will model the support D of the digital image. For
our example, the minimal grid X on IR2 consists of all unit open squares centered at points with integer
coordinates, and all unit open lines and vertices bounding these squares. In fact, this is one of the cellular
complexes proposed by Kovalevsky [8] to represent the support of a two-dimensional digital image. Finally
it seems to be reasonable to require that the space X be locally finite. In this case Kronheimer proved that
the minimal grid is an Alexandrov space. Recall that an Alexandrov space is a topological space with the
property that the intersection of an arbitrary number of open sets is open. Consequently there is a minimal
neighborhood for any point of the space. Alexandrov spaces were first considered by Alexandrov [1] under
the name of ”discrete spaces”.

The motivation of this paper is the following question:
If we digitize an image defined on IRn, carring out the steps 1 and 2 in order to generate a minimal locally
finite grid X of IRn, will the support of the image modelled by X have dimension n, given some reasonable
definition of dimension for locally finite grids ?

We are immediately confronted with the problem of defining the dimension of the Alexandrov space X.
Alexandrov spaces are only interesting if they are not T1, since a T1 Alexandrov space is discrete. Hence we
cannot apply any of the classical dimension functions ind, Ind, and dim (covering dimension) [3].

An Alexandrov space (X, τ) with the T0 property is representable by a canonical partially ordered set
(X,≤), where x ≤ y ⇔ x ∈ Cl({y}) [1]. Hence we can relate the dimension problem to the height of (X,≤)
simply defined as the supremum of all lengths of chains in (X,≤).

Our aim is to define a topological dimension function for Alexandrov spaces, which can be applied to
the minimal locally finite grids due to Kronheimer. This function should serve to give a sense to the concept
of ”n-dimensional digital image”. We will call this dimension Alexandrov dimension.
This paper is organized as follows:

In section 2 we will define the Alexandrov dimension and resume its basic properties derived and proved
in [15].

Section 4 will deal with the relation between the Alexandrov dimension and the height of the canonical
partially ordered set, which we call partial order dimension. For a T0 Alexandrov space both dimensions will
be equal. Some preliminaries about those spaces are reviewed in section 3.

In section 5 we will answer the dimension problem for discrete images, based on the model of Kronheimer.
We will show that the minimal locally finite grid of the standard fenestration of IRn has dimension n. It is
necessary to explain the construction due to Kronheimer in some detail at the beginning.

In the following (X, τ) is an Alexandrov space with the T0 property. U(x) denotes the minimal neigh-
borhood of x ∈ X. IntX , ClX , and FrX stand for the interior, the closure, and the frontier in the space
(X, τ), respectively. But we omit subscripts when confusion is not possible.

14



2. A topological dimension function for Alexandrov spaces

Our dimension function DIM for the Alexandrov space (X, τ) is defined inductively in terms of a local
dimension determined by the minimal neighborhoods.

Definition 1.:

Let n ∈ IN.

(i) DIM X = −1 ⇐⇒ X = φ.

(ii) If X 6= φ then define

DIM X = sup {DILx, x ∈ X}, where for x ∈ X we define

DILx ≤ n ⇐⇒ DIM(FrU(x)) ≤ n− 1,

DILx = n ⇐⇒ DILx ≤ n ∧ DILx 6≤ n− 1,

DILx = ∞⇐⇒ DILx ≤ n is false ∀n.

(We call DIM X the Alexandrov dimension of X.)

Note that DIM(FrU(x)) is the supremum of the local dimensions of the elements of FrU(x) measured
in the subspace (FrU(x), τFrU(x)) with the relative topology. We can write more exactly

DILXx ≤ n ⇐⇒ sup{DILFrU(x)y, y ∈ FrU(x)} ≤ n− 1,

but we omit the indices when dealing only with the space (X, τ).
It is easy to see, that two homeomorphic Alexandrov spaces have the same dimension. Obviously a

discrete space has dimension 0, and for a T0 Alexandrov space the converse is also true [15]. The authors
proved that the function DIM has properties like those of the classical topological dimension functions [15].
We will review here these properties without proofs :

Proposition 1.:

a) If A ⊆ X and (A, τA) is the relative subspace of (X, τ), then DIM A ≤ DIM X.

b) If (X, τX), (Y, τY ) are Alexandrov spaces, with X, Y non−empty and disjoint,

then DIM((X, τX)⊕ (Y, τY )) = max{DIM X,DIM Y }.

c) If X, Y are non−empty T0 Alexandrov spaces, then

i) DIM(X × Y ) ≤ DIM X + DIM Y,

ii) DIM(X × Y ) = DIM X + DIM Y, if DIM X = 0 or DIM Y = 0.

3. Alexandrov spaces as partially ordered sets

In this section we review some properties of T0 Alexandrov spaces. All these have been stated, and
many proved by Alexandrov in his paper ”Diskrete Räume” [1].

Recall that (X, τ) is T0 and for x ∈ X U(x) =
⋂{A ∈ τ : x ∈ A} ∈ τ .

Lemma 1.:

If x, y ∈ X, then

a) x ≤ y ⇐⇒ U(x) ⊇ U(y) defines a partial order relation on X,

b) and x ≤ y ⇐⇒ y ∈ U(x) ⇐⇒ x ∈ Cl{y}.
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Now we will consider the correspondence between Alexandrov spaces and partially ordered sets.

Proposition 2.: (Alexandrov [1])

(i) If (M,≤) is a partially ordered set, then

{ { y ∈ M : x ≤ y}, x ∈ M} is a base of a topology τ on M,

and (M, τ) is a T0 Alexandrov space.

(ii) If (X, τ) is a T0 Alexandrov space, then

x ≤ y ⇐⇒ U(x) ⊇ U(y) defines a partial order on X,

and the topological space constructed from (X,≤) as in (i) is homeomorphic to (X, τ).

(for a proof see also [15])

Proposition 2 implies that the relation ≤ on the T0 Alexandrov space (X, τ) is a canonical partial order.
Obviously the minimal neighborhoods have the form U(x) = {y ∈ X : x ≤ y}. Consequently the interior of
a set M ⊆ X can be expressed as

Int(M) = {m ∈ M : m ≤ n implies n ∈ M}.
Also the closure and the frontier of a set can be characterized using the canonical partial order.

Lemma 2.:

Let ≤ the canonical partial order of (X, τ).
a) If M ⊆ X then Cl(M) = {y ∈ X : ∃m ∈ M such that y ≤ m}.
b) For x ∈ X {x} is closed ⇐⇒ y ≤ x implies y = x.

c) If x, y ∈ X with x < y then x ∈ FrU(y).

4. The relation between DIM and the partial order dimension

Let (X,≤) be the canonical partially ordered set generated by (X, τ) and let x ∈ X. The dimension or
height of x is defined to be the supremum of all lengths l of chains of the form al < al−1 < · · · < a0 = x of
elements of X, where a < b ⇐⇒ a ≤ b and a 6= b. We will denote this dimension of x by ODILx. Then the
dimension or height of X can be defined as

Definition 2.:

ODIM(X) = sup {ODIL x, x ∈ X}
= ∞ if {ODIL x, x ∈ X} is unbounded.

(We call ODIM X the partial order dimension of X.)

Before analyzing the relation between the partial order dimension ODIM and the Alexandrov dimension
DIM , we derive a useful property of the local 0 - dimensionality of (X, τ).
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Lemma 3.:

Let x ∈ X.

DIL x = 0 implies : a) {x} is closed,

b) y ≤ x, y ∈ X implies y = x.

Proof:
Obviously a) ⇔ b). We will prove Cl {x} = {x}: Let y ∈ Cl {x} and suppose y 6= x. By lemma 2 y ≤ x and
y ∈ Fr U(x), and so Fr U(x) 6= φ, which contradicts DIL x = 0.

tu

The converse of this lemma is false, as the following example shows.

Example 1.:

Let X = {a, b, c} and τ = {{a, b}, {b, c}, {b}, φ, X}. Then {a} is closed, but DILa = 1 6= 0.

Corollary 1.:

If ∃ y 6= x such that y ≤ x then DILx ≥ 1.

Now let us investigate the correspondence between ODIM and DIM . First we will consider both
dimensions locally.

Proposition 3.:

DILx ≤ n implies ODILx ≤ n for any x ∈ X, n ≥ 0 .

Proof:
Let x ∈ X with DILx ≤ n, n ≥ 0, and a0, a1, · · · , am ∈ X with a0 = x and m ≥ 0 such that am < am−1 <
· · · < a0.
It is sufficient to show that m ≤ n (by induction on n).
1) Let n = 0 : Obviously m ≤ 0, using lemma 3.
2) Suppose now that if n ≤ k then DILx ≤ n implies ODILx ≤ n and let n = k + 1.
From DIL x ≤ k + 1 it follows DILFrU(x)y ≤ k ∀ y ∈ FrU(x).
Because of the transitivity of ≤ we have ai < x ∀ i = 1, · · · , m. Hence by lemma 2 ai ∈ FrU(x) holds
∀ i = 1, · · · ,m. Furthermore ClX({ai}) = ClFrU(x)({ai}) for any i, because FrU(x) is a closed subspace of
(X, τ).
Since DILFrU(x)a1 ≤ k it follows from the hypothesis that ODIL a1 ≤ k. Consequently al < al−1 < · · · <
a2 < a1 implies l ≤ k, where ar < ar−1 ⇔ ar ∈ ClFrU(x)({ar − 1}) ⇔ ar ∈ ClX({ar − 1}). Hence
m ≤ l + 1 ≤ k + 1.

tu

Again, the converse of this proposition is false, as the following example shows.

Example 2.:

Let (X, τ) be the minimal grid of the standard fenestration of IR2 (see section 5). Consider x a point element,
y an unit line element, and z an unit plane element such that x < y < z. Then ODILx = 0, ODILy = 1,
ODILz = 2, but DILx = DIL y = DIL z = 2.
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Proposition 4.:

For any x ∈ X, if ODIL y ≤ n ∀ y ∈ U(x) then DILx ≤ n.

Proof:
Suppose x ∈ X and ODILy ≤ n ∀ y ∈ U(x).
We prove DIM FrU(x) ≤ n− 1 by induction on n.
1) Let n = 0 : Then ODIL x = 0 and by lemma 2 {x} is closed, which implies DIM FrU(x) = −1, since
FrU(x) = φ. (For, suppose s ∈ FrU(x); then since s ∈ Cl(U(x)) by lemma 2 ∃ t ∈ U(x) such that s ≤ t.
But {y} is closed, hence s = t and t ∈ U(x)c, which is a contradiction.)
2) Suppose that conjecture holds for n ≤ k, and let n = k + 1.
Let f ∈ FrU(x), and am < am−1 < · · · < a1 < a0 = f be a chain in FrU(x). If m ≥ k + 1 then the above
chain exists in X, because FrU(x) forms a closed subspace of X (see step 2 of the proof of proposition 3). But
f ∈ Cl U(x), and so there is s ∈ U(x) with f ≤ s. But f = s is not possible, since f ∈ U(x)c; hence f < s,
which implies that am < · · · < a1 < f < s. Hence ODILs ≥ k + 2 which is a contradiction. Consequently
m ≤ k and ODIL f ≤ k in the space FrU(x). From the hypothesis it follows that DILFrU(x)f ≤ k and
hence DIM FrU(x) ≤ k.

tu

The following example shows, that the converse of proposition 4 is false.

Example 3.:

Let (X, τ) = ({x, y}, {{x}, φ, X}). Then DIL y = 0, but x ∈ U(y) and ODIL x = 1, because y < x.

We can resume propositions 3 and 4 and their corollaries to state the following conditions for the local
dimensions.

Proposition 5.:

Let x ∈ X.

a) If ODIL x ≥ n and ODIL y ≤ n ∀ y ∈ U(x), then DILx = n.

b) If DIL x = n, then ODIL x ≤ n and ∃y ∈ U(x) with ODIL y ≥ n.

Neither a) nor b) are invertible. Nevertheless we have the following:

Proposition 6.:

DIM X = n ⇐⇒ ODIM X = n.

Proof:
” ⇒ ”: DIM X = n ⇒ DIL x ≤ n ∀x ∈ X ∧ ∃x∗ ∈ X with DIL x∗ ≥ n. This implies that ODILx ≤
n ∀x ∈ X by proposition 3, and ∃y ∈ U(x∗) such that ODIL y ≤ n by proposition 4. Clearly y ∈ X , hence
sup{ODILx; x ∈ X} = ODIM X = n.
” ⇐ ”: ODIM X = n ⇒ ODIL x ≤ n ∀x ∈ X ∧∃x∗ ∈ X with ODIL x∗ ≥ n. This implies that DILx∗ ≥ n
by proposition 3. Let z ∈ X; clearly ODIL y ≤ n holds ∀y ∈ U(z), hence by proposition 4 DIL z ≤ n. Thus
DIM X = n.

tu
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5. N - dimensional discrete images

Let us define first some concepts used in the introduction and develop the construction of a topological
model of the support of a digital image due to Kronheimer [9]. Let (S, τS) be a topological space. The image
is to be defined on a set D, which is generated by some ”discretization” [11] of S. Usually S = IRn and
D = ZZn, but in the case S = IR2 we have as D the grid point set of one of the three homogeneous grids
in the plane : of the orthogonal grid (D = ZZ2), of the hexagonal grid, or of the triangular grid [4]. The
main idea of Kronheimer is the construction of a decomposition space of (S, τS), which gives a reasonable
(non-discrete) topology on D.

Definition 3.:

A family E = {Wi}i∈I of open disjoint sets is called

a fenestration of S, iff ∪ {Wi, i ∈ I} is dense in S.

Each element of D is indentified with a uniquely determined element of a fenestration E of S, then E
is extended to a decomposition of S.

Definition 4.:

A decomposition ∆ of S is called an E−grid iff E ⊂ ∆
and the natural projection map π : ∆ −→ S is open.

The set ∆ forms a topological space with the quotient topology

τ∆ = {M ⊆ ∆ : π−1(M) = ∪{N ∈ ∆ : N ∈ M} ∈ τs}.
The relative topology τE on E with respect to τ∆ is discrete, and the subspace (E, τE) is dense in (∆, τ∆).
In general, for a fixed fenestration E there are various E-grids. Let us consider an example.

Example 4.: (standard fenestration of IRn)

Let S = IRn and D = ZZn. The set E of all open unit cubes in IRn centered in points with integer coordinates
is a fenestration of IRn. We identify each point p of ZZn with the cube whose center is p.

∆ =E ∪ {all unit cubes which are open in IRn−k and bound

some element of E; k = 1, 2, · · · , n− 1} ∪ {all vertices of the elements of E}
is an E-grid. Let d ∈ ∆, then U∆(d) is the set of all those cubes which are bounded*1 by d. Note that for
x, y ∈ ∆, x bounds y iff x ≤ y, where ≤ is the canonical partial order generated by the Alexandrov space
(∆, τ∆). An other E-grid is

∆t = E ∪ {{x} : x ∈ IRn∧ 6 ∃e ∈ E such that x ∈ e} (trivial grid).

Observe that we can define an open continuous map f from ∆t onto ∆ by f(e) = e, if e ∈ E, and for
x ∈ ∆t \ E f({x}) = d, where x ∈ d. This map is one-to-one on E, but it identifies all points of IRn which
belong to the same open cube in IRn−k (k = 1, 2, · · · , n). It is easy to see that if we construct such a map
from ∆ onto another E-grid, we obtain a homeormorphism.

*1 An element e of E is a n-dimensional cube in IRn. A (n-k)-dimensional cube bounds e, if it is a side of e,
in the sense of polyhedras. The bounding relation on the set of unit cubes in IRn is reflexive, antisymmetric,
and transitive. A point of IRn is considered a 0-dimensional unit cube.
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Definition 5.:

An E−grid ∆ is said to be minimal iff

any continuous open map from ∆ onto another E−grid

being one−to−one on E is a homeormorphism.

Kronheimer has proved that for any fenestration E there exists a minimal E-grid, which is by definition
5 unique up to homeormorphism. In example 4 ∆ is the minimal grid of the standard fenestration of IRn.
The concept of an E-grid is generalized to that of a trace space.

Definition 6.:

For a topological space (∆, τ∆) the set

Tr∆ = {x ∈ ∆ : {x} ∈ τ∆} is called the trace of ∆.

If Tr∆ is dense in ∆, then ∆ is called a trace space.

Clearly, an E-grid is a trace space with trace E. A minimal trace space is defined by analogy with
definition 5. Kronheimer proved that for a trace space the T0 property is necessary but not sufficient for
minimality, and that any semiregular*2 T0 trace space is minimal. He established as a topological model of
the support of a digital image a locally finite ”digital space” defined in the following manner.

Definition 7.:

∆ is said to be a digital space iff ∆ is a semiregular trace space

(or, equivalently : iff ∆ is a minimal trace space).

A locally finite digital space is a T0 Alexandrov space. An E-grid ∆ is a locally finite digital space if
the following set of conditions is satisfied (from [9]):
1) E is locally finite, that is, for each element of S there is a neighborhood which intersects only a finite
number of elements of E.
2) The elements of E are connected and regularly open in S.
3) ∆ is a minimal E-grid, and the space (∆, τ∆) is semiregular.

Now we apply the Alexandrov dimension DIM to a locally finite digital space, in particular to the
minimal E-grid ∆ of a fenestration which fulfills the above conditions. Let us return to the problem of
”n-dimensional images”. We have S = IRn and D = ZZn identified with E and represented by ∆. It is easy
to see that for the minimal grid ∆ of the standard fenestration of IRn introduced in example 4, (∆, τ∆) is a
locally finite digital space. Then the following holds.

Proposition 7.:

The minimal grid ∆ of the standard fenestration E of IRn has Alexandrov dimension n.

Proof:
We suppose n ≥ 1. Let ≤ be the canonical partial order generated by (∆, τ∆).
If x ∈ E, then for any y ∈ ∆, x ≤ y implies x = y, which means that x is a maximal element. But for the n-
dimensional cube x there are k-dimensional cubes yk, k = 0, 1, · · · , n−1, such that y0 < y1 < · · · < yn−1 < yn,
hence ODIL x = n.

*2 A topological space is said to be semiregular, if there is a base of regularly open sets. In the Alexandrov
space X this is equivalent to Int(Cl U(x)) = U(x) ∀x ∈ X.
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If x ∈ ∆ \ E, then U(x) ∩ E 6= φ, because E is dense in ∆. Hence ODILx ≤ n, since exists a maximal
element y such that x ≤ y. Consequently ODIM ∆ = n, and by proposition 6 it follows DIM ∆ = n.

tu

In [15] the authors have discussed generalizations of proposition 7 to other fenestrations and special
types of minimal grids of subsets of IRn, which have dimension n. Note that for such a subset dimension
means ind or Ind or dim (covering dimension) all of which coincide in IRn [3], and in order to guarantee
that it has dimension n, it is necessary and sufficient that it has interior points [2].

6. Final comments

The Alexandrov dimension has properties similar to those of the classical dimensions used in topology.
But it is related also to other dimensions used in lattice and ring theory. For T0 spaces the Alexandrov
dimension coincides with the height of the canonical partially ordered set generated by the space, and also
with the Krull dimension defined for arbitrary topological spaces using suitable lattices of closed subsets
[12]. (This latter is called lattice dimension and graduated dimension by other authors.) For full details we
refer the readers to [15].
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