Foundations of Generic
Optimization

Volume 2: Applications of Fuzzy Control, Genetic
Algorithms and Neural Networks

Edited by

R. Lowen
University of Antwerp, Belgium

and

A. Verschoren
University of Antwerp, Belgium

@ Springer



Robert Lowen Alain Verschoren

University of Antwerp University of Antwerp
Belgium Belgium
ISBN: 978-1-4020-6667-2 e-ISBN: 978-1-4020-6668-9

All Rights Reserved

(© 2008 Springer

No part of this work may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception of any
material supplied specifically for the purpose of being entered and executed on a computer
system, for exclusive use by the purchaser of the work.

Printed on acid-free paper.
987654321

springer.com



Contents

An Overview of Fuzzy Control Theory. ............................. 1
W. Peeters

I Tntrodugliona - Bekiaver ab b e 550 1 Oy 0o D Bl OIS oo + sy ¢ 10 ¢+ 1
R - 1T o e e O A 1

1.2 Structure of a Fuzzy Controller.......................... 3

1.3 Fuzzy Modelling Requirements .................coeueuunn 5

1.4  The Fuzzy Controller Block ...............ooviiiiia... 7

1:5:¢ FNotationg Teneetmsed Montoring, LiarnostSsabosssl- - - - - 7
2rowPBuzay RulefBases ARIeligent Lo s eimiiist -9 - - - . 9
2.1  Linguistic Variables ................iiiiiiiiiiii.. .. 9

22 LinguisticHedges . ..., 10

2.3 FuzzyRiles itk % LN Sosmanv bitdvEl + ©F. .. .. 12

2.4  Linguistic Variables Revisited . . ......................... 19

3 The Design of a Fuzzy Controller. . ..............cooiiiiiin. .. 20
3R Choice o REIESNA vuwi#T firsr sedsizan bl < aisman) - k.2 - - .. 20

3.2 DesignParameters ...............i it 24

4  Aggregation and Implication Operators...............oooovi. .. 26
41  t—norms and f—CONOTIMS . ..o vvveveeetiennenneneneanen .. 27

42 ExtensionofLogic .............. ... a7 < i G 28

4.3  Conjunction and Disjunction Operators ... ................ 30

4.4  Implication Operators. . ........ ... ... iiieiuinnneennn. 33

5 Defuzzification Operators . ............oouveinieinninnenno. .. 37
SABEA @S 1P, ITUENMOG TI02IVIHUE, 1) SAaDOI sl i 37

5.2 Overview of the Different Defuzzification Operators . ....... 43

6  AnExtended Example'>. . VU0 LT UENEN FEADOS SRR BIoN 49
7 Simplified Controllers ........... . ... .. ..o oL 52
7.1  Table-Based Controllers.............. ... o . .. 53

7.2 Sugeno Controllers . .......... ... 55



vi i Contents

8 Adaptive Fuzzy Control.......... ... .. o i 57
8.1 General Remarks ........... . ... ... ... .. ... 57
82  Scaling ...... ... 59
8.3  Membership Function Tuning using Performance Criteria ... 60
8.4  Gradient Descent Method ........................ ..., 64
8.5  Self-Organizing Controllers ............................ 66
9 Stability Analysis . ... R 69
9.1 General Remarks .......... .. ... .. ... ... 69
9.2  The Input-Output Mapping . . . ...............ooiiii.. 70
9.3  The State Space Approach.................. .. ... ... 76
9.4  Lyapunov Stability ........ .. ... . ... 78
9.5  Input-Output Stability and Related Techniques ............ 87
10 Other Adaptive Techniques .. ............ it 88
10.1  Neural Networks . .. ..o tit it iiee e 89
10.2  Neuro-fuzzy Hybrid Systems ................ .. ........ 107
10.3  Genetic Algorithms .. ........ . ..ottt 120
10.4  Fuzzy-Genetic Hybrid Systems. ... ...................... 129
ReferenCes . .. oo 132

Optimal Fuzzy Management of Reservoir based on Genetic Algorithm ... 139
Alberto Cavallo and Armando Di Nardo

I Introduction. . ... 139

2 Reservoir Water Release Policy ............................... 142

3 Mathematical Model of the Reservoir .......................... 142

3.1  Volume Balance Equation ........................... ... 142

3.2 Hybrid Dynamical Model of the Reservoir ................ 144

4 Fuzzy Decision System . .......... i i i 144

S Optimizing the Decision Strategy .. .......... ... ... ... ... 147
5.1  Genetic Algorithm and Fuzzy Membership Function

Parameters . . ... ...t 147

5.2  PerformancesIndices............ ... ... . . 148

6 Inflow Identification and Montecarlo Simulation .. ............... 149

Fre CaseStudy . ... ... .. . ssepss ey SRe 10 BORASNED | S.F 154

8 - - ‘Conclusions . . . . AOMTIQL) NOUIMMERS DOB otnmmo) . SPh .. 157

Referencess.s.....................000W000) aoisonqgmi . &8 158

Genetic Fuzzy Modeling of Supervisory Scheduling of Freight Rail

Systems.. i . zwnimmeet) volieo i sl i B a0 Welrev @ w1, 2 aoui 161
Francisco Mota Filho, Rodrigo Goncalves, and Fernando Gomide
1 Introduction . ... ....... ..o e 161
2 Genetic Fuzzy Algorithm ........ .. ... oottt 164
3 Supervisory Train Schedule ........... .. ... ..., 172
4 ConCluSion . ...... .. . 178

References . ..o 179



Contents

Multiobjective Evolutionary Search of Difference Equations-based

Models for Understanding Chaotic Systems .......................
Luciano Sanchez and José R. Villar

L, . . IntsQAUGHONE 11 Fy 7 oo barisapr oy « « o0 o« o0« 2lavlsad yailidaiz, .

2 Evolutionary Transparent Modeling of Chaotic Systems .. ......

3 Operators Used in the Evolutionary Searches . ................

3.1  Representation of an Individual ......................

3.2  Random Generation of Genotypes ....................

3.3  Genetic Crossover and Mutation......................

34 FitnessFunction ....... ... ... ... . ... o il

4 Detailed Description of the MOSA Algorithm ................

4.1  Outline of the Algorithm ............................

42 TheDistance Operator .. ..............c.ooveioinn...

4.3  The Selection Operator .............c.ccuvurunennnnnns

44  Example of a MOSA Evolution ......................

5 ExperimentandResults........... .. . ... ... i

5.1  Dynamic Behavior of Universal Approximators.........

52 BenchmarkProblems ................oviiiiiinn....

6  Concluding Remarks and Future Work ......................

REfETERCESHEMA + oo o ot s i b T EAT T §rorses GBI ] rrr b s

An Integrated Fuzzy Inference-based Monitoring, Diagnostic,

and Prognostic System for Intelligent Control and Maintenance . . . ...

Dustin R. Garvey and J. Wesley Hines

I Introduction. . ........... ...
1.1  Reliability Engineering Methods .....................
1.2 Integrated Framework ......... ... ... ... . ... .....
2 Nonparametric Fuzzy Inference System .....................
3  Embodiments of the NFIS .. ... ... .. . . i,
AP Predicfions oAt And ey Y oren T T TN T
32 Detection . ...t
gedroruDjagnosiston ol B Frioniredley S@Ioe 0 T
34 Prognosis.............. i i e
4  Methodology . ......couunn
BF - IREsultse M Fzlonoller: cor oo SR
51  Montoring . .....ooiiiiiiit i
5.2 JIMaghosis: p sy Logbndars MOode: o g g
53  Reegnosts L oninol MOodule e
6 Conclustonsudlic Liengtalon ol G odes MOde o g s
References . ... .. i e

Stable Anti-Swing Control for an Overhead Crane with Velocity

Estimation and Fuzzy Compensation . ...........................

Wen Yu, Xiaoou Li, and George W. Irwin

1 Introduction......... ...t
2 Preliminaries . . ... oot e

vii



Contents ix
5  High-Level Tuning: Nonlinearity Tuning ....................... 291
5.1 Standard Additive Model (SAM)................... ... 292

2% SAM Theorem . zrataad romaW. bas. 2ollied o0 H eat 2ougd, 294

6  Fuzzy PID (FPID) Configurations ...............cccoiiuenenn... 295
6.1  High-Level Nonlinear Tuning Variables................... 296

62 Designof SAM ... ... ... . il 297

7 Stability Analysis . . ... 298
7.1  Direct Nyquist Array (DNA) Stability Theorem ............ 208

7.2  Maximum Values of PID Parameters ..................... 299

8 Control Simulation . ........ ... i 302
81 Examplel ..... ... ... ... i 303

s 2., Example2 ... .....................9lomsxE L LE L 303

9  Performance Analysis ......... ... ..l 306
ERREoHClUsions. . . . ., . . cnisnenol) ashiofl oWl diiw 21luesfl . LA ... 310
e I T O N SR |+ 1 s 1 (WL 1 sk W AT A LT ) A S 310

Evaluation of Fuzzy Implications and Intuitive Criteria of GMP
and GMT using MATLABGUI. .. ... ....... ... . ... 0 . .o ... 313
Sudesh K. Kashyap, J.R. Raol, and Ambalal V. Patel

I ddMetiomminn) as well As.otber aroloaonisigen colaguimbgsts 313
2 Intuitive Criteriaof GMPand GMT .. ......... .. ... .coiiin... 314
3 Fuzzy Implication Methods . . ..., 316
4  Properties of Interpretations of Fuzzy IF-THEN Rules ............ 319
5  Study of Satisfaction of Criteria using MATLAB/Graphics ........ 320
S DISCTISSIONS .« ... . . . . . . AoDstir ) onaziznel).anoigmyad odT. L. 385
VR CaCIUSIONS. oo sv .o ooy .. canERREXUTeb-MOM . LA L. 385
BERECNCES 0 . v e e netengiydsh- DO L Ok L L 385
FzController: A Development Environment for Fuzzy Controllers . .. ... 387
I. Alvarez-Lépez, O. Llanes-Santiago, and J.L. Verdegay

I Introduction. ... ... ... ii i e s 387
2 General Conception of the FzController System. ................. 388
RS cact method ™) 1 VIO T S ONH R GRSV e Y 388

22 ApproximatedMethod . ........ ... . o Lol 389

3  Modulesin FzController .......... ... ... .. ... o ... 390
3.1 IdentificationModule ... .............. ... ... ... ... 390

3.2  Design of Fuzzy Controllers Module ..................... 391

3.3  Real-Time Control Module ... .......................... 396

3.4 Automatic Generation of Codes Module .................. 397

BN € Grelusions” ! & 0, UL FUTRAAS MR I R L e 400
References . ... ... 401



Stable Anti-Swing Control for an Overhead
Crane with Velocity Estimation and Fuzzy
Compensation

Wen Yu, Xiaoou Li, and George W. Irwin

Abstract This chapter proposes a novel anti-swing control strategy for an overhead
crane. The controller includes both position regulation and anti-swing control. Since
the crane model is not exactly known, fuzzy rules are used to compensate friction,
gravity as well as the coupling between position and anti-swing control. A high-
gain observer is introduced to estimate the joint velocities to realize PD control.
Using a Lyapunov method and an input-to-state stability technique, the controller is
proven to be robustly stable with bounded uncertainties, if the membership functions
are changed by certain learning rules and the observer is fast enough. Real-time
experiments are presented comparing this new stable anti-swing PD control strategy
with regular crane controllers.

Keywords: Lyapunov stability; PD controller; Motion control

1 Introduction

Although cranes are very important systems for handling heavy goods, automatic
cranes are comparatively rare in industrial practice [24], because of high investment
costs. The need for faster cargo handling requires control of the crane motion so that
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its dynamic performance is optimized. Specifically, the control of overhead crane
systems aims to achieve both position regulation and anti-swing control. Several
authors have looked at this including [3], time-optimal control was considered using
boundary conditions, an idea which was further developed in [2] and [25]. Unfortu-
nately, to increase robustness, some time optimization requirements, like zero angu-
lar velocity at the target point [21], have to be given up. Gain scheduling has been
proposed as a practicable method [6] to increase tracking accuracy, while observer-
based feedback control was presented in [24].

Many attempts, such as planar operation [6] and assuming the absence of fric-
tion [21], have been made to introduce simplified models for application of model-
based control [24]. Thus, a self-tuning controller with a multilayer perceptron model
for an overhead crane system was proposed [19] while in reference [5], the con-
troller consists of a combined position servo control and a fuzzy-logic anti-swing
controller.

Classical proportional and derivative (PD) control has the advantage of not
requiring an overhead crane model but because of friction, gravitational forces and
the other uncertainties, it cannot guarantee a zero steady-state error. While PID con-
trol can remove this error, it lacks global asymptotic stability [14]. Several efforts
have therefore been made to improve the performance of PD controllers. Global
asymptotically stable PD control was realized by pulsing gravity compensation in
[27] while in [15], a PD controller for a vertical crane-winch system was developed,
which only requires the measurement of angles and their derivatives rather than a
cable angle measurement. In [9], a passivity-based controller was combined with a
PD control law. Here, asymptotic regulation of the gantry and payload position was
proven, but unfortunately both controllers again require a crane model to compen-
sate for the uncertainties.

There are two main weaknesses in applying PD control to this application:
(a) The PD controller requires suitable sensors to provide measurements of both
position and velocity. Position can be obtained very accurately by means of an
encoder, while velocity is usually measured by a tachometer, which can be expen-
sive and is often contaminated by noise [12]; (b) Due to the existence of friction
and gravitational forces, the steady-state error is not guaranteed to be zero [13].
It is therefore important to be able to realize PD control using only position mea-
surement. One possible approach is to use a velocity observer, which can be either
model-based or model-free. Model-based observers assume that the dynamics of
the overhead crane are either completely or partially known. For example, the vari-
able structure observer in [7] needed information about the inertia matrix to cal-
culate the sliding mode gain. In contrast model-free observers do not require such
exact knowledge about the overhead cranes. The most popular model-free observers
are high-gain ones which can estimate the derivative of the output [22]. Recently, an
observer was presented in reference [12], where the non-linearity of the manipulator
was estimated by a static neural network.

In this chapter, a new modified algorithm is proposed which overcomes both
these limitations of PD control at the same time. Firstly, a high-gain observer
which can achieve stability is added to regular PD control. A fuzzy system is
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then used to estimate both friction and gravity. Unlike other work which used
the singular perturbation method [22], a new proof of stability is presented using
Lyapunov analysis. This proof explains the relation between the observer error and
the observer gain.

Since the swing of the payload depends on the acceleration of the trolley, mini-
mizing both the operation time and the payload swing produces partially conflicting
requirements. The anti-swing control problem involves reducing the swing of the
payload while moving it to the desired position as fast as possible [1]. One particu-
lar feedforward approach is input shaping [26], which is an especially practical and
effective method of reducing vibrations in flexible systems. In [20] the anti-swing
motion-planning problem is solved using the kinematic model in [17]. Here, anti-
swing control for a three-dimensional overhead crane is proposed, which addresses
the suppression of load swing. Non-linear anti-swing control based on the singu-
lar perturbation method is presented in [30]. Unfortunately, all of these anti-swing
controllers are model-based.

In this chapter, a PID law is used for anti-swing control which, being model-free,
will affect the position control. The same fuzzy compensator used for friction and
gravity is applied to handle the position error. The required online learning rule is
obtained from the tracking error analysis and there is no requirement for off-line
learning. The overall closed-loop system with the high-gain observer and the fuzzy
compensator is shown to be stable if the membership functions have certain learning
rules and the observer is fast enough. Finally, results from experimental tests carried
out to validate the controller are presented.

2 Preliminaries

The overhead crane system described schematically in Figure 1 (a) has the system
structure shown in Figure 1 (b). Here « is the payload angle with respect to the
vertical and B is the payload projection angle along the X-coordinate axis. The
dynamics of the overhead crane are given by [28]:

MX)i+C(x,%)x+Gx)+F=1 )]
wherex= Xy, yw, ¢, ﬁ,R]T, (%, Yw, R) is position of the payload, T=F;, F}, O,O,FR]T,
F, F, and Fg represent the control forces acting on the cart and rail and along the lift-
line, F = [y, 14y, 0,0, uR]Tx, Iy, My and pig are frictions factors, G (x) is gravitational
force, C(x,x) is the Coriolis matrix and M (x) is the dynamic matrix of the crane.

In (1), there are some differences from other crane models in the literature. The
length of the lift-line is not considered in [9], so the dimension of M is 4 x 4, while
in [20], which also addresses anti-swing control and position control, the dimen-
sion of M is 3 x 3. In [16], the dimension of M is 5 x 5 as in this chapter. However,
some uncertainties such as friction and anti-swing control coupling are not included.
This overhead crane system shares one important property with robot systems: the
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Fig. 1 Overhead crane

Coriolis matrix C(x,x) is skew-symmetric, i.e., it satisfies the following relation-
ship [9]
T [M(x) = 2C(x,%)] x=0 2)

A normal PD control law has the following from
7= —Kp(x— ) — Kg(%— 1)

where K, and K are positive definite, symmetric and constant matrices, which cor-
respond to the proportional and derivative coefficients, x? € R3 is the desired po-
sition, and x9 € R is the desired joint velocity. Here the regulation problem is
discussed, so x4 = 0.

Input-to-state stability (ISS) is another elegant approach for stability analysis be-
sides the Lyapunov method. It can lead to general conclusions on stability using
the input and state characteristics. Thus, consider a class of non-linear systems de-
scribed by

X :f(xhul) 3)

where x, € R” is the state vector, u, € R™ is the input vector, y, € R™ is the output
vector. f:R" x R™ — R is locally Lipschitz. Some passivity properties, as well
as some stability properties of passive systems are now recalled [4].

Definition 1. A system (3) is said to be globally input-to-state stability if there exists
a K-function y(s) (continuous and strictly increasing y(0) = 0) and a KL -function
B (s,t) (K-function and for each fixed sy > 0, Ilim B (s0,t) = 0), such that, for each

U € Lo (||u(2)||., < o) and each initial state x° € R", the following holds

et )| < B (111 2) + 7l

foreacht > 0.



Stable Anti-Swing Control for an Overhead Crane 227

This definition implies that if a system has input-to-state stability, its behaviour
should remain bounded when its inputs are bounded.

3 Anti-Swing Control for the Overhead Crane

The control problem is to move the rail in such a way that the actual position of
the payload reaches the desired one. The three control inputs [Fy, F,, F] can force
the crane to the position [x,,, ¥, R], but the swing angles [ct, B] cannot be controlled
using the dynamic model (1) directly. In order to design an anti-swing control, lin-
earization models for [e, B] are analyzed. Because the acceleration of the crane
is much smaller than the gravitational acceleration, the rope length is kept slowly
varying and the swing is not big, giving

il <e Dul<g |R|<g
IR| <R, o<1, 'ﬁ‘ <1
sp=sinac= 0, cy=cosa=l,
The approximated dynamics of [¢, 3] are then

G+%,+g0=0, B+y,+gB=0

Since ¥, = A%, Vw = 37, the dynamics of the swing angles are
r m

R F = F
+g R B+gB i “

The control forces Fy and F, are assumed to have the following form
Fx = Al (xwwv'w) +A2 (a> (X)

F, = By (Yw,Yw) + B2 (ﬁ,g) Q)

where A| (X, %) and By (Y, Yw ) are position controllers, and A (¢, &) and Bz(B,B)
are anti-swing controllers. Substituting (5) into (4), produces the anti-swing control
model

; A Ay 4 By By

d+ga+—=——, B+gf+—=——= 6

0 e T M PP g T, E

Now if —L and are regarded as disturbance, }:1 and 2> M as control inputs, then (6)
isa second order linear system with disturbances. Standard PID ontrol can now be
applied to regulate o and B thereby producing the anti-swing controllers
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Az (00, 6) = kpar & + kgap O+ kiaa [y ctdt

| i 2 3 )
B, (ﬁ,ﬁ) = kppoB + ka2 B + kin fo Bdt

where k42, kaqo and kiqo are positive constants corresponding to proportional, deriv-
ative and integral gains.
Substituting (5) into (1), produces the position control model

M (x)%+V (x,%)%+G(x) + Tx+D = u (8)

where D = [AZ,BZ,O,O,O]T, U = [Al,Bl,O,O,FR]T. Using this model, a position
controller will be designed in Section 4.

4 Position Control with Fuzzy Compensation

A generic fuzzy model for friction and gravity is provided by a collection of / fuzzy
rules (Mamdani fuzzy model [18])

R TF (x, is Ay;) and (v, is Ay;) and (« is A) and (B is Aa;)
and (R is As;) THEN (fx is Bli) and (fy is Bz,») and (ﬁ is B3,-) ©)

Here j/f;, j/’; and }’; are the uncertainties (friction, gravity and coupling errors) along
the X, Y, Z -coordinate axis. i = 1,2 - - /. A total of fuzzy IF-THEN rules are used to
perform the mapping from the input vector x = [x,,, ¥, &, 8 ,R]T € R to the output
RS i AL

vector y (k) = [fl,fz,f3] = [91,92,53] € R®. Here Ay;,---A,; and By;,--- B, are
standard fuzzy sets. In this chapter, some on-line learning algorithms are introduced
for the membership functions B ; such that the PD controller is stable.

By using product inference, centre-average defuzzification and a singleton fuzzi-
fier, the pth output of the fuzzy logic system can be expressed as [29]

o o] ] o

i=1

where p = 1,2,3, 14 is the membership functions of the fuzzy sets A i, and w), is
the point at which ppg, = 1. Defining

n I n
‘Pi:H“Aﬂ/Z H,UAJ, (11)
j=1 i=1j=1

then (10) can be expressed in matrix form

y=WP(x) (12)
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wii Wi
where the parameter matrix W (k) = [ wy ... wy | € R3*! and the data vector
w3l w3y

®[x] = [#1---¢)" € R™!. The position controllers have a PD form with a fuzzy
compensator

1 = (A1 (%), B1 O ), 0,0, ] = =Kyt (x =) = Kar (3= #) + Wi (x)
(13)

where x = [x,,,yw, 0, 8,R])", x4 = [x‘fv,y‘,’v,(),(),Rd]T, and x4, y¢ and R are the
desired positions. In the regulation case % = y& = R? = 0. Further, Ky =
diag [kpa1,kpp1,0,0,kpr| , Kg1 = diag [kgar,kap1,0,0,kqg,] . The time-varying weight
matrix W, is determined by the fuzzy learning law. According to the Stone—Weierstrass
theorem [8], a general non-linear smooth function can be written as

fx) =We(x) +u(r) (14)

where W* is optimal weight matrix, and g (¢) is the modeling error. In this chap-
ter we use the fuzzy compensator (12) to approximate the unknown non-linearity
(gravity, friction and coupling of anti-swing control) as

W, ®(x) = G(x) + Tx+D+p (1) 15)
When the velocity x is not available, a velocity observer is needed. Section 6.5

describes how to incorporate a model-free observer to PD control for the overhead
crane.

5 PD Control with a Velocity Observer

The overhead crane dynamics (1) can be rewritten in state-space form as [22]

X = X2
X = Hi(X,u) (16)
y=x

where x; = x = [x, yw,(x,B,R]T is the position vector, x; is the velocity vector,
X = [xT,xI]7, and u = 7 is the control input. The output is a position measurement,

Hi (X, u) = —M(x1) 7 C(x1,%2)%1 + G(x1) + FX) + 1] a7

1f the velocity vector x; is not measurable and the dynamics of manipulator are
unknown, a high-gain observer can be used to estimate x; [22]



d 1
LML Ay Ky (=2
7 Jt2+8 1(x1 —%1)

4
dt

) (18)
= 8—2K2(X1 —%1)

where £; € R°, %, € R° denotes the estimated values of x|, x» respectively; € is a
small positive parameter, and K| and K> are positive definite matrices chosen such

that the matrix [_II? (I)] is stable. Defining the observer error as
—K2
X=x—2X Z1=X, Lr=¢&% (19)
where £ = [T, #7]7, the observer error equation can then be formed from (16) and
(18)
d
6[751 = —KiZ
i (20)
£—7 = —K27) +€°Hj
dt
or in the matrix form: y
e—%=AZ+¢e’BH, @D
dt
e S 0 : ;
where A = %0l B= Ik The structure of the velocity observer is the same
—K2

as in [22], but a new theorem is proposed here in order to integrate the observer and
the fuzzy compensator .

Theorem 2. If the high gain observer (18) is used to estimate the velocity of the
overhead crane (16), the observer error X will converge to the following residual set

De = {x| |I¥] <K (&)}

where K (€) =2€2 sup ||BH,||" ||P||, P is the solution of Lyapunov equation:
t€[0,T]

ATP4PA= -1 (22)

See appendix for the proof of Theorem 1.

Reference [22] gave the proof of stability under the assumption of € — 0. Here €
can be any positive constant. Since sup ||BH;||” ||P|| is bounded, & can be selected

10,7}

arbitrary small to make K (&) small enough. Hence the observer error ¥ becomes ar-
bitrary small as € — 0. However, a large observer gain (1) will enlarge the observer
noise, so € should be selected to be as large as possible if the observer accuracy
K (&) is within tolerance.

The PD control law in combination with the state estimate from a high-gain ob-
server is then given by
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Tl K () = 20 )= K% = 24) (23)
plX1 1 d\X2 — X

where x‘l’ € K is the desired position, x‘zi € R is the desired velocity. In the regula-
tion case fz’ =0, and %, is of course the velocity approximation from the high-gain
observer.

The coupling between anti-swing control and position control can be explained
as follows. For the anti-swing control (6), the position control A and B are distur-
bances, which can be decreased by the integral action in PID control. The anti-swing
model (6) is an approximator, but the anti-swing control (7) does not in fact use this,
as it is model-free. Hence while the anti-swing control law (7) cannot suppress the
swing completely, it can minimize any consequent vibration.

For the position control (8), the anti-swing control lies in the term D =
[Az,Bz,O,O,O]7 , which can also be regarded as a disturbance. The coupling due to
anti-swing control can be compensated by the fuzzy system. Consequently, the PD
control with the fuzzy compensation can be expressed as

Ti— =Ko —x‘f)~de2+W,(1>(x) 24)

If neither the velocity xp nor the friction and gravity are known, the normal PD
control needs to be combined with velocity estimation and fuzzy compensation to
give

T=—K,(x1 —x{) — Kg(%2 — x4) + W, D(s) (25)

where s = (xT, %), x4 = 0. The stability of this controller is analysed next.

6 Stability Analysis

Equation (14) can be rewritten as

G(x)+F (x) = W*P(x) +n, (26)

T
T
where x = [qT,q ] , W* is fixed bounded matrix, and 1), is the approximation

error whose magnitude also depends on the value of W*. Now, 7, is assumed to be
quadratic bounded such that
Mg AgTle < Mg @7

where 1), is a positive constant. Friction and gravity can be estimated according to

G (x) + F (x) = W,d(s) (28)
where W, is a time-varying weight matrix for the fuzzy system. The following rela-
tion holds

W*®(x) — W, P(x) = W, d(s) (29)
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where W, = W* — W,. From Theorem 1 it is known that the high gain observer (18)
can make (£, —x;) converge to a residual set and it is possible to write x; = £, + &,
where 8 is bounded such that 87 A58 < 7j5. Now defining the tracking error as
(x‘21 =0), ¥ =x; —x‘li:

BH=%H=x—90 30)
the following theorem holds.
Theorem 3. If the updating laws for the membership functions in (28) are

%W, = — K, ®(s)5 (31)

where K, K, and A3 are positive definite matrices, and K, satisfies
Ki> A + A5 32)

then the PD control law with fuzzy compensation in (25) can make the tracking error
stable. In fact, the average tracking error X, converges to

. I 2 - _
timsup - [ ally, dr < 7 +275 (33

where Q1 = Ky — (A;' + Az").

The proof of Theorem 2 is contained in the Appendix.

7 Experimental Comparisons

The proposed anti-swing control for overhead crane systems has been implemented
on a InTeCo [10] overhead crane test-bed, see Figure 2. The rail is 150 cm long.,
and the physical parameters for the system are as follows:

M, =6.5kg, M.=08kg, My=13kg, I=0.0lkg m*

Here interfacing is based on a Xilinx FPGA microprocessor, comprising a multi-
function analog and digital I/O board dedicated to real-time data acquisition and
control in the Windows XP environment, mounted in a PC Pentium-III 500 MHz
host. Because the Xilinx FPGA chip supports real-time operations without intro-
ducing latencies caused by the Windows default timing system, the control program
operated in Windows XP with Matlab 6.5/Simulink. All of the controllers employed
a sampling frequency of 1 kHz.

The anti-swing control is discussed first. There are two inputs in the anti-swing
model (6), A; and Ay with A; from the position controller and A, from the anti-
swing controller. When the anti-swing control A is designed by (6), A} is regarded
as a disturbance. The chosen parameters of the PID (7) control law were
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Fig. 2 Real-time control for an overhead crane

kpar = 2.5, kgap =18, kipp = 0.01

kpbr = 15, kapp =10, ki = 0.6

The resulting angles are shown in Figure 3 for the position control without anti-
swing, and in Figure 4 for the position control with anti-swing. It can be seen that
the swing angles & and 8 are decreased a lot with the anti-swing controller.

The position control law in equation (13) is discussed next. In this case there
are two types of input to the position model (8), D = [Az,...]l U= [Ah...]T.
When the position control A; is designed by (25) with u; = 7, the anti-swing
control A, in (8) is regarded as a disturbance which will be compensated for the
fuzzy system (12). Theorem 2 implies that to assure stability, K; should be large
enough such that K; > Agl +Agl. Since these upper bounds are not known,
K41 = diag[80,80,0,0,10] is selected. The position feedback gain does not effect
the stability, but it should be positive, and was chosen as K| = diag[5,5,0,0,1].

A total of 20 fuzzy rules were used to compensate the friction, gravity and the
coupling from anti-swing control. The membership function for A ;; was chosen to
be the Gaussian function

Aﬁ:exp{—(xj—mﬁ)z/lOO}, j=1.-5, i=1---20
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Fig. 4 With swing angles control

where the centres mj; were selected randomly to lie in the interval (0, 1). Hence,
W, € R &(x) = [0]---02]" . The learning law took the form in (31) with
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K, = 10. The desired gantry position was selected as a square wave, and the re-
sulting gantry positions are shown in Figure 5. The regulation results from PD
control without fuzzy compensation [15] are shown in Figure 6. For compari-
son the PID control results (K = diag[80,80,0,0,10], K, = diag|5,5,0,0,1],
K = diag[0.25,0.25,0,0,0.1]) are shown in Figure 7.

Clearly, PD control with fuzzy compensation can successfully compensate the
uncertainties such as friction, gravity and anti-swing coupling. Because the PID
controller has no adaptive mechanism, it does not work well for anti-swing coupling
in contrast to the fuzzy compensator which can adjust its control action. On the other
hand, the PID controller is faster than the PD control with fuzzy compensation in
the case of small anti-swing coupling.

The structure of fuzzy compensator is very important. The constants in the mem-
bership functions of the fuzzy system have to be chosen either by simulation or
experiment. From fuzzy theory the form of the membership function is known not
to influence the stability of the fuzzy control, but the approximation ability of fuzzy
system for a particular non-linear process depends on the membership functions
selected. The number of fuzzy rules constitutes a structural problem for fuzzy sys-
tems. It is well known that increasing the dimension of the fuzzy rules can cause the
“overlap” problem and add to the computational burden [29]. The best dimension
to use is still an open problem for the fuzzy research community. In this application
20 fuzzy rules were used. Since it is difficult to obtain the fuzzy structure from prior
knowledge, several fuzzy identifiers can be put in parallel and the best one selected
by a switching algorithm. The learning gain K, will influence the learning speed, so
a very large gain can cause unstable learning, while a very small gain produce slow
learning process.

8 Conclusion

In this chapter, the disadvantages of the popular PD control for overhead crane are
overcome in the following two ways: (1) a high-gain observer is proposed for the
estimation of the velocities of the joints; (2) a fuzzy compensator is used to com-
pensate for gravity and friction. Using Lyapunov-like analysis, the stability of the
closed-loop system with velocity estimation and fuzzy compensation was proven.
Real-time experiments were presented comparing our stable anti-swing PD control
strategy with regular crane controllers. These showed that the PD control law with
the anti-swing and fuzzy compensations is effective for the crane system.
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9 Appendix

Proof of Theorem 1. Since the spectra of K| and K, are in the left half plane,
(22) has a positive definite solution P. Consider the following candidate Lyapunov
function:Vp(Z) = €27 PZ. The derivative of this along the solutions of (20) is:

a1 d A7 br d e

Vo = sdtz P74 €7 Pdtz
= 7" (ATP+PA) 7 +2¢% (BH,)" Pz (34)
< — ||zl +2¢€||BH, || |||l |2]

since (16) has a solution for any ¢ € [0,7], ||H1]| is bounded for any finite time 7.
t can be therefore concluded that ||BH| || |P|| is bounded.

V <~z + K (e) 2]

vhere K () = 2€2 sup ||BH,|| ||P||. Note that if

t€[0,7]
()] > K (¢) (35)

Tow, let T; denote the time interval during which ||Z(¢)|| > K (¢). Then V < 0,
1 € [0, T] means the total time during which ||Z(1)|| > K (€) is finite



Y T < oo (36)

If (1) falls outside a ball of radius K (&) for only a finite time and then re-enters
it, Z(r) will eventually remain completely inside. If Z(¢) leaves the ball an infinite

times (k — o), since Z Ty < oo and Ty > 0, then it follows that T, — 0. This then
=1

means that Z(t) ﬁnal]y stays inside the ball and so Z(¢) is bounded from an invariant
set argument.
Now, from (21), 4 7(¢) is also bounded. If ||Z(f) [l is defined as the largest track-

ing error during 7, (36) and a bounded 4 7(t) imply that gim Nz =K (e)] =
and ||Z(r)||will convergence to K (€), because ¥ = [f) (1)1] Zand € < 1, as a result

||%]| converges to the ball of radius K (&) . QED n

Proof of Theorem 2. The following Lyapunov function is proposed

1 1 )\
Vo= s MB + 55 Ko + 5or (WKW (37)

where K, and K|, are any positive definite matrices. Using (1), (25) and (26), the
closed-loop system is given by

My = —Cx; — Kpx — K% + W,dD(s) - W*d)(s) — Mg (38)

Now the derivative of (37) is
Vo = 55 M, + %x{Mfez + 3 Kp®) +1r (W,TKW‘W,) (39)
and from (38) and (29) it follows that
AMy — M —55Cx — Ol — B Ky — B Ko — 5 [WoD(s) + 11,
Using (2) and (39), this then can be written as

V, = —,\?ngz —% sz ngdizT —X’g Vo + 1]
J (40)

d a
+x26+tr[<1<w1d W, — @(s)x§>w

In view of the matrix inequality,

xTy + (x7y)" < XTA-'x + YT AY 41y
which is valid for any X,¥ € ®R"** and for any positive definite matrix 0 < A =
AT € R it follows that if X = %, and Y = 8, then 8 < i{/\gliz + 5. Since
x§ = i§' =0, and using the learning law (31) and the skew-symmetric (2), then (40)
becomes
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Vo <~ 01% + M+ is (42)

where Q) = Ky — (A;' + A5 +AZ') . Now, from (32), it is known that Q > 0, and
(42) can then be represented as

Vo < —hain (Q) 152117 + 1] Agng + 87 A58

V; is therefore an ISS-Lyapunov function. Using Theorem 1 from [23], the bound-
edness of 7, and )5 implies that the tracking error ||%,]| is stable. Integrating (42)
from 0 to T yields

o
/0 st <Vag—Var+ (Mg +7s)T < Vao+ (g +75) T

and, since HXZHE = Hizﬂé + s, equation (33) is established. QED |
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