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Abstract. The general projection neural network (GPNN) is a versa-
tile recurrent neural network model capable of solving a variety of opti-
mization problems and variational inequalities. In a recent article [IEEE
Trans. Neural Netw., 18(6), 1697-1708, 2007], the linear case of GPNN
was studied extensively from the viewpoint of stability analysis, and it
was utilized to solve the generalized linear variational inequality with
various types of constraints. In the present paper we supplement three
global exponential convergence results for the GPNN for solving these
problems. The first one is different from those shown in the original arti-
cle, and the other two are improved versions of two results in that article.
The validity of the new results are demonstrated by numerical examples.

1 Introduction

The following problem is called the generalized linear variational inequality
(GLVI): find x∗ ∈ �m such that Nx∗ + q ∈ X and

(Mx∗ + p)T (x − Nx∗ − q) ≥ 0 ∀x ∈ X, (1)

where M, N ∈ �m×m; p, q ∈ �m; and X is a closed convex set in �m. It has many
scientific and engineering applications, e.g., linear programming and quadratic
programming [1], extended linear programming [2] and extended linear-quadratic
programming [2, 3]. If X is a box set, i.e.,

X = {x ∈ �m|x ≤ x ≤ x} (2)

where x and x are constants (without loss of generality, any component of x
or −x can be −∞), a neurodyamic approach was proposed in [4] and [5] from
different viewpoints for solving it. Moreover, in [5], the neurodynamic system
was given a name, general projection neural network (GPNN). A general form
of the system is as follows:

dx

dt
= λW{−Nx + PX((N − αM)x + q − αp) − q}, (3)
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where λ ∈ �, W ∈ �m×m and α ∈ � are positive constants, and PX(x) =
(PX1(x1), · · · , PXm(xm))T with

PXi(xi) =

⎧
⎨

⎩

xi, xi < xi,
xi, xi � xi � xi,
xi, xi > xi.

(4)

Recently, the stability of the above GPNN was studied extensively in [6].
Many global convergence and stability results were presented. In addition, when
X in the GLVI (1) is not a box set, but a polyhedral set defined by inequalities
and equalities, several specific GPNNs similar to (3) were formulated to solve
the corresponding problems. Some particular stability results of those GPNNs
were also discussed. In the present paper, we will give a few new stability results
of the GPNNs, reflecting our up-to-date progress in studying this type of neural
networks.

Throughout the paper, ‖x‖ denotes the l2 norm of a vector x, I denotes the
identity matrix with an appropriate dimension, and X∗ stands for the solution
set of GLVI (1), which is assumed to be nonempty. In addition, it is assumed
that there exists at least one finite point in X∗. Define an operator D+f(t) =
lim suph→0+(f(t + h) − f(t))/h, where f(t) is a function mapping from � → �.

2 Main Results

2.1 Box Set Constraint

First, we give a new stability result of the GPNN (3) for solving the GLVI with
box-type constraint as described in (2). A useful lemma is introduced first [5,4].

Lemma 1. Consider PX : �m → X defined in (4). For any u, v ∈ �m, we have
‖PX(u) − PX(v)‖ ≤ ‖u − v‖.

Theorem 1. Let N = {nij} and D = N − αM = {dij}. If

nii >

m∑

j=1,j �=i

|nij | +
m∑

j=1

|dij |, ∀i = 1, · · · , m, (5)

then the GPNN (3) with W = I is globally exponentially stable.

Proof. From (5) there exists θ > 0 such that

nii ≥
m∑

j=1,j �=i

|nij | +
m∑

j=1

|dij | + θ, ∀i = 1, · · · , m. (6)

Let x∗ be a finite point in X∗, L(t0) = max1≤i≤m |xi(t0) − x∗
i | and zi(t) =

|xi(t) − x∗
i | − L(t0)e−λθ(t−t0). In the following we will show zi(t) ≤ 0 for any

i = 1, · · · , m and all t ≥ t0 by contradiction. Actually, if this is not true, there
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must exists a sufficiently small ε > 0, two time instants t1 and t2 satisfying
t0 ≤ t1 < t2, and at least one k ∈ {1, · · · , m}, such that

zk(t1) = 0, zk(t2) = ε (7)
D+zk(t1) ≥ 0, D+zk(t2) > 0 (8)
zi(s) ≤ ε, ∀i = 1, · · · , m; t0 ≤ s ≤ t2. (9)

From (3) we have

dx/dt = λ{−N(x − x∗) + PX(Dx + q − αp) − PX(Dx∗ + q − αp)} (10)

and from Lemma 1 we have

|PXi(dix + qi − αpi) − PXi(dix
∗ + qi − αpi)|

≤|di(x − x∗)| ≤
m∑

j=1

|dij ||xj − x∗
j |, ∀i = 1, · · · , m,

(11)

where di ∈ �1×m denotes the ith row of D. Without loss of generality, we
assume xk(t2)−x∗

k > 0. (The case of xk(t2)−x∗
k < 0 can be reasoned similarly.)

It follows from (7), (9), (10) and (11) that xk(t2) − x∗
k = L(t0)e−λθ(t−t0) + ε,

|xi(t2) − x∗
i | ≤ L(t0)e−λθ(t−t0) + ε, ∀i = 1, · · · , m, and

D+zk(t2) =D+|xk(t2) − x∗
k| + λθL(t0)e−λθ(t−t0)

≤ − λnkk(xk(t2) − x∗
k) + λ

m∑

j=1,j �=k

|nkj ||xj(t2) − x∗
j |

+ λ

m∑

j=1

|dkj ||xj(t2) − x∗
j | + λθL(t0)e−λθ(t−t0)

≤ − λnkk(L(t0)e−λθ(t−t0) + ε) + λ

m∑

j=1,j �=k

|nkj |(L(t0)e−λθ(t−t0) + ε)

+ λ

m∑

j=1

|dkj |(L(t0)e−λθ(t−t0) + ε) + λθL(t0)e−λθ(t−t0)

=λ

⎛

⎝−nkk +
m∑

j=1,j �=k

|nkj | +
m∑

j=1

|dkj | + θ

⎞

⎠ L(t0)e−λθ(t−t0)

+ λ

⎛

⎝−nkk +
m∑

j=1,j �=k

|nkj | +
m∑

j=1

|dkj |

⎞

⎠ ε

In view of (5) and (6), we have D+zk(t2) < 0, which contradicts (8). Hence,

|xi(t) − x∗
i | ≤ L(t0)e−λθ(t−t0), ∀i = 1, · · · , m; t ≥ t0. (12)

The proof is completed.
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The above theorem is proved in the spirit of [7]. From the analysis it can be
inferred that the convergence rate of (3) is at least λθ where θ is the difference
between the left and right hand sides of (5). Different from most of the results
in [6], the exponential convergence rate here is expressed in terms of every com-
ponent of the state vector separately, which provides a more detailed estimation
than the results obtained by the usual Lyapunov method.

In the above proof, if we choose L(t0) = ‖x(t) − x∗‖2, following similar ar-
guments we can arrive at the following condition which assures the global ex-
ponential stability results as well: the minimum eigenvalue of (N + NT )/2 is
greater than ‖D‖. Interestingly, this is a result stated in Corollary 1 of [6] where
a different proof was given.

2.2 General Constraints

Consider the GLVI (1) with X defined as

X = {x ∈ �m|x ∈ Ωx, Ax ∈ Ωy, Bx = c}, (13)

where A ∈ �h×m, B ∈ �r×m, c ∈ �r, and Ωx, Ωy are two box sets defined as
{x ∈ �m|x ≤ x ≤ x} and {y ∈ �h|y ≤ y ≤ y}, respectively (cf. (2)).

Let Ã = (AT , BT )T and

M̃ =
(

M −ÃT

0 I

)

, p̃ =
(

p
0

)

, Ñ =
(

N 0
ÃN 0

)

, q̃ =
(

q

Ãq

)

,

Ω̃y = {y ∈ �h+r|(yT , cT )T ≤ y ≤ (yT , cT )T }, Ũ = Ωx × Ω̃y.

It was shown in [6] that the GLVI can be converted to another GLVI with a box
set Ũ only, and as a result, can be solved by using the following specific GPNN:

du

dt
= λW{−Ñu + PŨ ((Ñ − αM̃)u + q̃ − αp̃) − q̃}, (14)

where λ > 0, α > 0, W ∈ �(m+h+r)×(m+h+r) are constants, u = (xT , yT )T is the
state vector, and PŨ (·) is the activation function defined similarly as in (4). The
output of the neural network is simply x(t), the first part of the state u(t).

In [6], it was proved that when W = (Ñ +αM̃)T , if MT N > 0 then the output
trajectory x(t) of the neural network is globally convergent to the unique solution
x∗ of the problem (1). In the following, we show that if this condition holds, the
convergence rate can be exponential by choosing an appropriate scaling factor
λ. The proof is inspired by [8].

Theorem 2. Consider GPNN (14) with W = (Ñ +αM̃)T for solving the GLVI
with X defined in (13). If MT N > 0 and λ is large enough, then the output
trajectory x(t) of the neural network is globally exponentially convergent to the
unique solution of the problem.

Proof. It was shown in [6, Theorem 5] that the solution of the GLVI is unique,
which corresponds to the first part of any equilibrium point of (14). Consider
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the function V (u(t)) = ‖u(t) − u∗‖2/2 where u∗ is a finite equilibrium point of
(14). Following a similar analysis procedure to that of Corollary 4 in [5] we can
derive

dV (u(t))
dt

≤ λ{−α(u−u∗)T M̃T Ñ(u−u∗)−‖PŨ ((Ñ−αM̃)u+q̃−αp̃)−Ñu−q̃‖2}.

It follows that

dV (u(t))
dt

≤ λα{−(u − u∗)T M̃T Ñ(u − u∗)} = λα{−(x − x∗)T MT N(x − x∗)}

≤ λα{−β‖x − x∗‖2},

where β > 0 denotes the minimum eigenvalue of (MT N + NT M)/2. Then

V (u(t)) ≤ V (u(t0)) − λαβ

∫ t

t0

‖x(s) − x∗‖2ds

and

‖x(t) − x∗‖2 ≤ 2V (u(t0)) − 2λαβ

∫ t

t0

‖x(s) − x∗‖2ds.

Without loss of generality it is assumed ‖x(t0) − x∗‖2 > 0 which implies
V (u(t0)) > 0. Then there exist τ > 0 and μ > 0 that depend on x(t0) only, so that
∫ t0+τ

t0
‖x(s) − x∗‖2ds ≥ τμ. If λ is large enough so that λ ≥ V (u(t0))/(αβτμ),

we have

V (u(t0)) − λαβ

∫ t0+τ

t0

‖x(s) − x∗‖2ds ≤ 0.

It follows that for any t > t1 ≥ t0 + τ

‖x(t) − x∗‖2 ≤‖x(t1) − x∗‖2 + 2V (u(t0)) − 2λαβ

∫ t1

t0

‖x(s) − x∗‖2ds

− 2λαβ

∫ t

t1

‖x(s) − x∗‖2ds

≤‖x(t1) − x∗‖2 + 2V (u(t0)) − 2λαβ

∫ t0+τ

t0

‖x(s) − x∗‖2ds

− 2λαβ

∫ t

t1

‖x(s) − x∗‖2ds

≤‖x(t1) − x∗‖2 − 2λαβ

∫ t

t1

‖x(s) − x∗‖2ds.

As a result,

‖x(t) − x∗‖2 − ‖x(t1) − x∗‖2

t − t1
≤ −2λαβ

f(t) − f(t1)
t − t1



314 X. Hu, Z. Zeng, and B. Zhang

where f(t) =
∫ t

t1
‖x(s) − x∗‖2ds. Let t → t1 + 0, then we have

d‖x(t) − x∗‖2

dt
≤ −2λαβ‖x(t) − x∗‖2.

Therefore

‖x(t) − x∗‖ ≤ ‖x(t1) − x∗‖e−λαβ(t−t1) = c0e
−λαβ(t−t0), ∀t > t1

where c0 = ‖x(t1) − x∗‖eλαβ(t1−t0).
Since dV (u(t))/dt ≤ 0, u(t) ∈ S = {u ∈ �m|V (u(t)) ≤ V (u(t0))} for all

t ≥ t0. Moreover, V (u(t)) is radially unbounded, then S is bounded, which
implies that ‖x(t) −x∗‖ is bounded over t ≥ t0. Let Δ = maxt0≤t≤t1 ‖x(t)− x∗‖
and c1 = Δ/e−λαβ(t1−t0). We have

‖x(t) − x∗‖ ≤ Δ = c1e
−λαβ(t1−t0) ≤ c1e

−λαβ(t−t0), ∀t0 ≤ t ≤ t1.

Hence
‖x(t) − x∗‖ ≤ cme−λαβ(t−t0), ∀t ≥ t0,

where cm = max(c0, c1). The proof is completed.

2.3 Inequality Constraints

Consider X in (13) with inequality constraints only; i.e.,

X = {x ∈ �m|Ax ∈ Ωy}, (15)

where the notations are the same as in (13). Let

N̂ = ANM−1AT , q̂ = −ANM−1p + Aq.

The following specific GPNN is proposed to solve the problem:

– State equation

du

dt
= λW{−N̂u + PΩy((N̂ − αI)u + q̂) − q̂}; (16a)

– Output equation
v = M−1AT u − M−1p, (16b)

where λ ∈ �, α ∈ �, λ > 0, α > 0 and W ∈ �h×h.
In [6], it was proved that when W = (N̂ +αI)T , if MT N > 0 then the output

trajectory v(t) of the neural network is globally convergent to the unique solution
x∗ of the problem (1). In the following, we show that if this condition holds, the
convergence rate can be exponential by choosing an appropriate λ.

Theorem 3. Consider GPNN (16) with W = (N̂ + αI)T for solving the GLVI
with X defined in (15). If MT N > 0 and λ is large enough, then the output
trajectory v(t) of the neural network is globally exponentially convergent to the
unique solution of the problem.
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Proof. From [6, Theorem 6], the solution of the GLVI is unique, which is identical
to v∗ = M−1AT u∗ − M−1p where u∗ is any equilibrium point of (16a). Define a
function

V (u(t)) =
1
2
‖u(t) − u∗‖2, t � t0.

From (16b), we have

‖v − v∗‖2 = ‖M−1AT (u − u∗)‖2 � ‖M−1AT ‖2‖u − u∗‖2.

Thus V (u) � ‖v−v∗‖2

2‖M−1AT ‖2 . Following a similar analysis to that of Corollary 4
in [5] we can deduce

dV (u(t))
dt

� λ{−α(u − u∗)T N̂(u − u∗) − ‖PΩy((N̂ − αI)u + q̂) − N̂u − q̂‖2}.

It follows that

dV (u(t))
dt

� λα{−(u − u∗)T ANM−1AT (u − u∗)}

= λα{−[M−1AT (u − u∗)]T MT N [M−1AT (x − x∗)]}
= λα{−(v − v∗)T MT N(v − v∗)} � λα{−β‖v − v∗‖2},

where β > 0 denotes the minimum eigenvalue of (MT N + NT M)/2. Then

V (u(t)) ≤ V (u(t0)) − λαβ

∫ t

t0

‖v(s) − v∗‖2ds

and

‖v(t) − v∗‖2 ≤ 2γV (u(t0)) − 2λαβγ

∫ t

t0

‖v(s) − v∗‖2ds,

where γ = ‖M−1AT ‖2. The rest of the proof is similar to the latter part of the
analysis of Theorem 2, and is omitted for brevity.

3 Illustrative Examples

Example 1. Let’s first solve a GLVI (1) with a box set, where

M =

⎛

⎝
4 2 −1
0 3 0

−1 3 6

⎞

⎠ , N =

⎛

⎝
5 2 −1
1 5 0

−1 3 8

⎞

⎠ , p =

⎛

⎝
−1
2
5

⎞

⎠ , q =

⎛

⎝
0
2
0

⎞

⎠ ,

andX = {x ∈ �3|(−4, 0, −4)T � x � (6, 6, 6)T }. Letα = 1, it is easy to verify that
the condition in Theorem 2 is satisfied. Actually, n11 −|n12|− |n13|−

∑3
j=1 |d1j | =

1, n22 − |n21| − |n23| −
∑3

j=1 |d2j | = 1, n33 − |n31| − |n32| −
∑3

j=1 |d3j | = 2. Then
the GPNN (3) is globally exponentially stable. All numerical simulations validated
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Fig. 1. State trajectories of the GPNN (3) in Example 1 with W = I , λ = α = 1 and
x(0) = (10, 6, −5)T
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ln‖x2(t) − x∗
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ln‖x3(t) − x∗

3‖
L(t0) − λθt

Fig. 2. Solution error of the GPNN (3) in Example 1. The estimated upper bound
(dashed line) is also plotted.

this conclusion. Fig. 1 demonstrates the state trajectories started from the initial
pointx(0) = (10, 6, −5)T withλ = 1 (t0 is set to 0),which converge to the unit solu-
tion of the problem x∗ = (0.4265, −0.4853, −0.2647)T. To show their exponential
convergence rates, we take the natural logarithm of both sides of (12),

ln |xi(t) − x∗
i | ≤ ln L(t0) − λθt, ∀i = 1, · · · , 3; t ≥ 0.

and depict both sides of above inequality in Fig. 2. (It is evident that θ can be
chosen as θ = 1). The right-hand-side quantity now becomes a straight line in
the figure. It is seen that the error of the states are all upper bounded by this
line.



Three Global Exponential Convergence Results of the GPNN 317

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

10

15

20

Time unit t

O
ut

pu
ts

v1(t) v3(t)

v2(t)

Fig. 3. Output trajectories of the GPNN (16) in Example 2 with W = (N̂ + αM̂)T ,
λ = α = 1 and ten random initial points
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x
∗ ‖

Fig. 4. Solution error of the GPNN (16) in Example 2. Because of numerical errors in
simulations, when ln ‖v(t) − x∗‖ ≤ −8, the trajectories become unstable, and thus are
not shown here.

Example 2. Consider a GLVI with a polyhedron set X defined in (15). Let

M =

�
� 1 −1 −1

−1 1 0
0 1 −1

�
� , N =

�
�1 −1 −1

0 −1 0
0 3 −1

�
� , p =

�
�−1

−1
2

�
� , q =

�
�0

2
0

�
� , A =

�
1 1 0

−5 5 −1

�
,

and Ωy = {y ∈ �2| − 10 � y � 10}. It can be verified that MT N > 0. The
GPNN (16) with W = (N̂ + αM̂)T can be used to solve the problem ac-
cording to Theorem 3. Simulation results showed that from any initial point
this neural network globally converges to the unique equilibrium point u∗ =
(−0.0074, −0.7556)T . Then, the solution of the GLVI is calculated as x∗ =
(−0.4444, −3.2296, −1.9852)T. Fig. 3 displays the output trajectories of the
neural network with λ = α = 1 and 10 different initial points, and Fig. 4 displays
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the solution error (in natural logarithm) along with these trajectories. It is seen
that for any of the 10 curves in Fig. 4 there exits a straight line with negative
slope above it, that is, the convergence rate is upper bounded by an exponential
function of t which tends to zero as t → ∞.

4 Concluding Remarks

The general projection neural network (GPNN) has attracted much attention
in recent years. The paper presents three sets of global exponential convergence
conditions for it, which extend our recent results to some extent. Numerical
examples illustrate the correctness of these new results.
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