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Analogue of the Kronecker–Weber Theorem in
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Abstract. The classical Kronecker–Weber Theorem establishes that the maximal abelian ex-
tension of the field of rational numbers is the union of all cyclotomic number fields. In 1974,
D. Hayes proved the analogue in characteristic p > 0. Hayes’ result says that the maximal
abelian extension of the rational function field Fq(T ) is the composite of three pairwise lin-
early disjoint extensions. The first one is the union of all cyclotomic function fields relative
to the infinite prime, the pole divisor of T , introduced by L. Carlitz. The second one is the
union of all cyclotomic function fields relative to the zero divisor of T and where the infinite
prime is totally wildly ramified and is the only ramified prime. Finally, the third one is the
union of all constant extensions. The proof of Hayes is based on the Reciprocity Law. In this
work we describe another approach to Hayes’ analogue of the Kronecker–Weber Theorem that
uses tools from the classical case as well as from the ramification theory of Artin–Schreier
extensions and the arithmetic of Witt vectors developed by H. Schmid.
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Introduction

We may understand by class field theory the study of abelian extensions of global fields
and local fields. In some sense, the simplest object of these two families of fields is
the field of rational numbers Q. Therefore, one of the objectives in class field theory is
to take care of the maximal abelian extension of Q. The first one to study the maximal
abelian extension of Q as such was Leopold Kronecker in 1853 [11]. He claimed that
every finite abelian extension of Q was contained in a cyclotomic field Q(ζn) for some
n ∈ N. The proof of Kronecker was not complete as he himself was aware.

Heinrich Weber provided a proof of Kronecker’s result in 1886 [27]. Weber’s proof
was also incomplete but the gap was not noticed up to more than ninety years later by
Olaf Neumann [16]. The result is now known as the Kronecker–Weber Theorem. This
theorem is the object of this work.

David Hilbert gave a new proof of Kronecker’s original statement in 1896 [10].
This was the first correct complete proof of the theorem. Because of this some people
call the result the Kronecker–Weber–Hilbert Theorem. However, as we mentioned
above, Hilbert was not aware of the gap in Weber’s proof. Hilbert’s Twelfth Problem
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is precisely to extend the Kronecker–Weber Theorem to any base number field.

There is a close analogy between algebraic number fields and algebraic functions of
one variable. When the field of constants of a function field is a finite field, the analogy
is much deeper. The reason is that both families of fields have finite residue fields.
These families is what we know as global fields. The analogue of the Kronecker–
Weber Theorem for function fields is to find explicitly the maximal abelian extension
of a rational function field with field of constants the finite field of q elements k =
Fq(T ).

One natural question here is if there exists something similar to cyclotomic fields in
the case of function fields. Note that in full generality we have “cyclotomic” extensions
of an arbitrary base field F , namely, F (ζn) where ζn denotes a generator of the group
Wn = {ξ ∈ F̄ | ξn = 1}, F̄ denoting a fixed algebraic closure of F . However, in our
case, k(ζn)/k is just an extension of constants.

Leonard Carlitz established an analogue of cyclotomic number fields to the case of
function fields in [3, 4]. David Hayes [7] developed the ideas of Carlitz and he was
able to describe explicitly the maximal abelian extension A of k. Hayes’ description
of A is analogous to the Kronecker–Weber Theorem. His result may well be called
the Kronecker–Weber–Hilbert–Hayes Theorem but we will call it just the Kronecker–
Weber Theorem in characteristic p. Hayes’ approach to find A is the use of the Artin–
Takagi reciprocity law in class field theory.

The main purpose of this expository paper is to present another approach to Hayes’
result. The main tools of this description are based on the Artin–Schreier–Witt theory
of p–cyclic extensions of fields of characteristic p and particularly the arithmetic of
these extensions developed by Ernst Witt [29, 30] and Hermann Ludwig Schmid [22,
23, 24]. We may say that this approach is of combinatorial nature since, based on the
results of Witt and Schmid, we compare the number of certain cyclic extensions with
the number of such extensions contained in A. We find that these two numbers are the
same and from here the result follows.

The organization of the paper is the following. After reviewing the results of Kro-
necker, Weber and Hilbert, we present a proof of the classical Kronecker–Weber Theo-
rem based on the original ideas of Hilbert by using Minkowski’s discriminant theorem
and ramification groups. In Sections 3 and 4 we give a brief exposition of the Carlitz–
Hayes cyclotomic function fields and the description of the maximal abelian extension
A of k. After recalling the Takagi–Artin reciprocity law theorem, we describe, in Sec-
tion 6, the proof of Hayes. In Section 7 we recall some results on Witt Vectors and
some relations among the several “conductors” of extensions, particularly Schmid’s
computation of the conductor of a cyclic p–extension, where p is the characteristic.
These results are the main tools in the combinatorial proof of the Kronecker–Weber
Theorem, which is presented in the last section.
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Notation
2 For n ∈ N, Q(ζn) denotes the cyclotomic number field obtained by adjoining the

n–th roots of unity to the field of rational numbers Q.

2 For a number field or a local field L, OL denotes the ring of integers of L.

2 If L/K is an extension of global or local fields, DL/K denotes the different of
the extension and DL := DL/Q.

2 conL/K is used to denote the conorm of a divisor in K to the corresponding
divisor in L.

2 For any prime p, vp is the valuation associated to p.

2 For m ∈ N, Cm will denote the cyclic group of m elements.

2 If L/K is a finite Galois extension of local fields, the i–th ramification group Gi,
i ≥ 0 is Gi = {σ ∈ G | σx− x ∈ pi for all x ∈ OL}. G0 is the inertia group.

2 k denotes the rational congruence function field Fq(T ).
2 p∞ denotes the infinite prime in k.

2 RT denotes the ring of polynomials Fq[T ].
2 R+

T := {P ∈ RT | P is monic and irreducible}.
2 For M ∈ RT , ΛM := {u ∈ k̄ | uM = 0}.
2 For M ∈ RT , λM denotes a fixed generator of the RT –module ΛM .

2 The field k(ΛM ) = k(λM ) will also be denoted by kM .

2 If α ∈ L is an algebraic element over K, Irr(α, x,K) ∈ K[x] denotes the irre-
ducible polynomial of α over K.

2 In k, the finite primes will indistinctly be written as the prime divisor p or the
prime element P in R+

T of p, that is, the divisor of P in k is equal to p

p
degP
∞

.

2 In a function field F the principal divisor of a nonzero element α of F will be
denoted by (α)F or (α) if the underlying field F is clear.

2 If a ∈ F and F is a field of characteristic p > 0, then ℘(a) = ap − a.

2 The operations
•
+,

•
− and

•
× denote the sum, difference and product respectively

of Witt vectors.

1 The classical case
The Kronecker–Weber Theorem establishes

Theorem (Kronecker–Weber). Every finite abelian extension of the field of rational
numbers Q is contained in a cyclotomic extension Q(ζn).
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The theorem was first stated by Leopold Kronecker (1823–1891) in [11]. He wrote
(see [21]):

“... We obtain the remarkable result that the root of every abelian equation
with integer coefficients can be represented as a rational function of roots of
unity ...”

In his paper, Kronecker understands by abelian equations those with cyclic Galois
group. The general case follows from this one. His formulation was only for cyclic
extensions. Kronecker gave the generalization for arbitrary abelian number fields later
on in his 1877 paper [12, page 69]. The approach of Kronecker used Lagrangian
resolvents obtained by adjoining the n–th roots of unity to cyclic extensions of degree
n over a fixed number field.

What Kronecker did not provide was the proof for the case of cyclic extensions of
degree 2n, n ≥ 3. When p is an odd prime, the cyclotomic field extension Q(ζpn)/Q
is cyclic with Galois group Cp−1 × Cpn−1 . When p = 2 and n ≥ 3, Q(ζ2n)/Q is
not a cyclic extension and in fact Gal(Q(ζ2n)/Q) ∼= C2 × C2n−2 . In particular there
exist two cyclic subextensions of degree 2m in Q(ζ2n)/Q, 2 ≤ m ≤ n − 2 and three
cyclic subextensions of degree 2. The problem with the prime 2 was already admitted
by Kronecker himself.

Heinrich Weber (1842–1913) tried in [27] to give a complete proof of Kronecker’s
result in 1886. His work was based on Kronecker’s ideas. It seems that for about
ninety five years nobody noticed that Weber’s proof also had a gap. The gap was
first observed by Olaf Neumann in [16]. In 1896/1897, David Hilbert gave a new
proof of Kronecker’s result in [10]. This is the first complete proof of the Kronecker–
Weber Theorem and thus some people suggest that the theorem should be called the
Kronecker–Weber–Hilbert Theorem. Hilbert says in his paper that Weber had given a
complete and general proof of Kronecker’s result. As noticed by Neumann, this was
not so. Weber [28] finally gave his first complete valid proof in 1909.

2 A proof of the Kronecker–Weber Theorem based on
ramification groups

In this section we present the fundamental steps of a proof of the Kronecker–Weber
Theorem (see [14]). We use freely results on ramification groups, see [25] for instance.

Proposition 2.1. LetK/Q be an abelian extension such that the prime p ∈ N is tamely
ramified. Then there exists an extension L of Q and a subfield F ⊆ Q(ζp) such that

(a).- Every unramified prime in K is unramified in L.

(b).- p is unramified in L.

(c).- FK = FL.
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SKETCH OF PROOF: Since p is tamely ramified, the first ramification group G1 of p is
trivial. Since K/Q is abelian, the inertia group I = I(p|p), where p is a prime of K
dividing p, is contained in F∗p =

(
Z/pZ

)∗ so that the ramification index e = e(p|p)
divides p − 1. In particular p 6= 2. We consider the unique extension F with Q ⊆
F ⊆ Q(ζp) of degree e over Q. Then F and L = (FK)I are the fields satisfying the
proposition.

Applying Proposition 2.1 and induction on the number of ramified primes we obtain
as a corollary the Kronecker–Weber Theorem when K/Q is tamely ramified. The
substantial part of the proof of the theorem is when wild ramification is present. We
consider first a special case and divide this case in two parts: p odd and p = 2.

Proposition 2.2. Let K/Q be a cyclic extension of degree p over Q with p an odd
prime such that p is the only ramified prime. Then the different of the extension satisfies
DK = p2(p−1) where p is the only ideal of K dividing p.

SKETCH OF PROOF: We have e = e(p|p) = p. Choose π ∈ p \ p2. Let

f(x) = xp + ap−1x
p−1 + · · ·+ a1x+ a0 = Irr(π, x,Q) ∈ Z[x]

be the irreducible polynomial of π over Q. All the nonzero terms aiπi 6= 0, 0 ≤ i ≤
p− 1 have different vp valuations: vp(aiπi) = pvp(ai) + i ≡ i mod p.

Since πp+ap−1π
p−1 + · · ·+a1π+a0 = 0 it follows that p|ai for all 0 ≤ i ≤ p− 1

since otherwise vp(aj) = 0 for some j and

∞ = vp(0) = vp(π
p + ap−1π

p−1 + · · ·+ a1π + a0)

= min
0≤i≤p−1

{p, pvp(ai) + i} = min
p-aj
{j} 6=∞.

Now DK = 〈f ′(π)〉 = pk with k =
∑∞

i=0(|Gi| − 1) where Gi denotes the i–
th ramification group corresponding to p over p. Since Gal(K/Q) is of order p, we
obtain |Gi| − 1 = 0 or p− 1 so that p− 1|k. We have

f ′(π) = pπp−1 + (p− 1)ap−1π
p−2 + · · ·+ 2a2π + a1.

Writing ap = 1, it follows that for ai 6= 0 we have vp(iaiπi−1) ≡ (i − 1) mod p. In
particular, for all i 6= j and ai 6= 0 6= aj , we obtain vp(iaiπi−1) 6= vp(jajπ

j−1). Thus

k = vp(DK) = vp(f
′(π)) = min

1≤i≤p
ai 6=0

{
vp(iaiπ

i−1)
}
= vp(i0) + vp(ai0) + i0 − 1,

for some i0. The case i0 = p is not possible since vp(papπp−1) = 2p−1 6≡ 0 mod (p−
1). Therefore 1 ≤ i0 ≤ p− 1. Thus

vp(ai0π
i0−1) = pvp(ai0) + i0 − 1 < 2p− 1 = vp(papπ

p−1)
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and since p|ai0 , we have vp(ai0) = t ≥ 1. Therefore 2p − 1 > tp + i0 − 1, so that
t = 1 and k < 2p − 1. Since we have wild ramification k > p − 1 and therefore
p − 1 < p + i0 − 1. Because p − 1|k we obtain finally that i0 = p − 1 and that
k = 2(p− 1).

Proposition 2.3. Let p be a prime number, p > 2, and let K/Q be a cyclic extension
of degree p where p is the only ramified prime in K/Q. Then K ⊆ Q(ζp2).

PROOF: Let L/Q be an abelian extension such that [L : Q] = p2 and such that p is
the only ramified prime. Let G0 be the inertia group of p and let E := LG0 . Then p
is unramified in E/Q and therefore E/Q is an unramified extension. It follows that
E = Q and that G0 = G := Gal(L/Q). Since L/Q is wildly ramified, we have
that the first ramification group G1 is not trivial, G1 6= {1}. Let F := LG1 . Then
p is tamely ramified in F/Q. It follows that F = Q and that G1 = G. We have
|G1| = |G0| = |G| = p2.

Let Gr be the first ramification group such that |Gr| < p2. We have r ≥ 2. Now,
since Gr−1/Gr ⊆ pr−1/pr ∼= OL/p ∼= Fp, it follows that |Gr−1/Gr| = p and
|Gr−1| = p.

Let H be any subgroup of G of order p. Consider b := p∩OLH . From Proposition
2.2 we obtain DLH = b2(p−1). Thus

DL = DL/LH conLH/L b
2(p−1) = DL/LHp

2p(p−1).

In other words, the different DL/LH = DLp
−2p(p−1) is independent of the group H .

If H 6= Gr, then the ramification groups for the extension L/LH are given by

Gi ∩H =

{
H if 0 ≤ i ≤ r − 1
1 if i > r

.

Thus, DL/LH = ps with s =
∑∞

i=0(|Gi ∩H| − 1) = r(p− 1).
On the other hand, for H = Gr, we have

DL/LGr = pt with t =
∞∑
i=0

(|Gi ∩Gr| − 1) ≥ (r + 1)(p− 1).

Hence, H is the unique subgroup of G of order p and G is a cyclic group. Now let K
andK ′ be two cyclic extensions of degree p over Q and such that p is the only ramified
prime in either one. If K 6= K ′ then KK ′ would be a noncyclic extension of degree
p2 over Q with p the only ramified prime. It follows that K = K ′ and that K is the
only subfield of Q(ζp2) of degree p over Q.

Theorem 2.4. Let p be an odd prime. Let K/Q be an abelian extension of degree pm

where p is the only ramified prime. Then K is the only subfield of Q(ζpm+1) of degree
pm over Q and in particular K/Q is a cyclic extension.
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PROOF: Let L be the unique subfield of Q(ζpm+1) of degree pm over Q. The field LK
is an abelian extension of Q where p is the only ramified prime. If LK/Q were not a
cyclic extension, then it would contain a noncyclic subextension of degree p2. Hence
K/Q is a cyclic extension. Since Gal(LK/Q) ⊆ Gal(K/Q)×Gal(L/Q) ∼= C2

pm , we
obtain that Gal(LK/Q) is of exponent pm. Therefore Gal(LK/Q) = Gal(K/Q) ∼=
Cpm and L = K.

Now for the even prime, p = 2, first we consider a quadratic extension K/Q such
that 2 is the only finite ramified prime. Write K = Q(

√
d) with d a square free

integer. The discriminant of K is δK = ±d,±4d. Since δK is a power of 2 it follows
that d = ±1 or d = ±2. Therefore K = Q(i) = Q(

√
−1) = Q(ζ4) or K = Q(

√
2)

or K = Q(
√
−2). In either case, K ⊆ Q(ζ8) = Q(

√
2,
√
−2).

Theorem 2.5. If K/Q is a cyclic extension of degree 2m with m ≥ 2, with 2 the
only finite ramified prime, then K ⊆ Q(ζ2m+2). Furthermore, K = Q(ζ2m+2) ∩ R =
Q(ζ2m+2 + ζ−1

2m+2) := Km or K = Km−1(i) = Q(ζ2m+2 − ζ−1
2m+2).

PROOF: First we consider an abelian real extensionK/Q of degree 2m (not necessarily
cyclic) such that 2 is the only ramified prime. However, since Q(

√
2) is the only real

quadratic extension with 2 the only ramified prime, it follows that K is cyclic. Thus
KKm is cyclic so that K = Km.

Now consider a nonreal cyclic extension K/Q of degree 2m and with 2 the only
finite ramified prime. Let M := K(i) and M+ := M ∩ R. If K 6= M , that is,
i /∈ M , K+ 6= M+ and K+ = Km−1 because it is a real extension of degree 2m−1

over Q. It follows that M+ = Km. Since M = M+(i), we have M = Q(ζ2m+2)
and Gal(M/Q) ∼= C2 × C2m . There exist three subfields of M of index 2, namely,
Q(ζ2m+1), Km and Km−1(i). Since K/Q is a cyclic nonreal extension, we obtain that
K = Km−1(i).

Theorem 2.6 (Kronecker–Weber). Let K/Q be a finite abelian extension. Then there
exists n ∈ N such that K ⊆ Q(ζn).

PROOF: Since K/Q is an abelian extension, we have Gal(K/Q) ∼= ⊕ri=1Cni where
each ni is a prime power. Consider Ki := KHi the fixed field under Hi := ⊕rj=1

j 6=i
Cnj ,

1 ≤ i ≤ r. Then K = K1 · · ·Kr. If we prove that each Ki ⊆ Q(ζmi) for some
mi ∈ N, then K ⊆ Q(ζm1 , . . . , ζmr) ⊆ Q(ζm1···mr). Therefore we may assume that
K/Q is a cyclic extension of degree pm where p is a prime.

From Proposition 2.1, there exist an extension L of Q and F ⊆ Q(ζn) for some
n ∈ N such that FK = FL and that the only possible ramified prime in L/Q is p.
In fact, n can be chosen to be n = q1 · · · qt where the ramified primes of K/Q are
q1, . . . , qr and possibly p. Therefore

L ∩ F = Q and Gal(LF/Q) ∼= Gal(L/Q)× Gal(F/Q) ∼= Gal(FK/Q).
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It follows from Theorems 2.4 and 2.5 that L ⊆ Q(ζpl) for some l. Thus K ⊆ FK =
FL ⊆ Q(ζq1···qr)Q(ζpl) = Q(ζplq1···qr).

3 Cyclotomic function fields
The analogue of the Kronecker–Weber Theorem in characteristic p > 0 is: given a
congruence rational function field k := Fq(T ), find explicitly the maximal abelian
extension A of k.

In [3] and [4] Leonard Carlitz established a theory of cyclotomic function fields
parallel to the classical one. David Hayes [7] developed this theory. In this section
we present the basic properties of the Carlitz–Hayes cyclotomic function fields. More
details can be consulted in [7] and [26].

Let T be a transcendental fixed element over the finite field of q elements Fq and
consider k := Fq(T ). Here the pole divisor p∞ of T in k is called the infinite prime.
Let RT := Fq[T ] be the ring of polynomials in T . Here k plays the role of Q and RT
the role of Z. Consider the ring EndFq(k̄) of Fq–endomorphisms of k̄, a fixed algebraic
closure of k,

EndFq(k̄) = {ϕ : k̄ → k̄ : ϕ(a+b) = ϕ(a)+ϕ(b), ϕ(αa) = αϕ(a)∀a, b ∈ k̄, α ∈ Fq}.

Since the field k consists of two parts: Fq and T , we consider two special elements
of EndFq(k̄): the Frobenius automorphism ϕ of k̄/Fq, and µT multiplication by T .
More precisely, let ϕ, µT ∈ EndFq(k̄) be given by

ϕ : k̄ → k̄ , µT : k̄ → k̄

u 7→ uq u 7→ Tu.

Note that ϕ ◦ µT = µqT ◦ ϕ and in particular ϕ ◦ µT 6= µT ◦ ϕ. For any M ∈ RT ,

the substitution T 7→ ϕ + µT in M gives a ring homomorphism RT
ξ−→ EndFq(k̄),

ξ(M(T )) =M(ϕ+ µT ). That is, if u ∈ k̄ and M ∈ RT , then

ξ(M)(u) = ad(ϕ+ µT )
d(u) + · · ·+ a1(ϕ+ µT )(u) + a0u

where M(T ) = adT
d + · · ·+ a1T + a0. In this way k̄ becomes an RT –module. The

action is denoted as follows: if M ∈ RT and u ∈ k̄, M ◦ u = uM := ξ(M)(u). We
obtain uM =

∑d
i=0

[
M
i

]
uq

i
where

[
M
i

]
is a polynomial in RT of degree (d− i)qi and[

M
0

]
=M ,

[
M
d

]
= ad. We have for all M,N ∈ RT and α, β ∈ Fq[
αM+βN

i

]
= α

[
M
i

]
+ β

[
N
i

]
,
[
T d+1

i

]
= T

[
T d

i

]
+
[
T d

i−1

]q
,

with d ∈ N ∪ {0}.
This action of RT on k̄ is the analogue of the action of Z on Q̄∗: n ∈ Z, x ∈

Q̄∗, n ◦ x := xn. Of course the action of RT is an additive action on k̄ and Z acts
multiplicatively on Q̄∗.
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The analogy of these two actions runs as follows. If M ∈ RT , let ΛM := {u ∈
k̄ | uM = 0} which is analogous to Λm := {x ∈ Q̄∗ | xm = 1}, m ∈ Z. We have
that ΛM is an RT –cyclic module. Indeed we have ΛM

∼= RT /(M) as RT –modules.
A fixed generator of ΛM will be denoted by λM . We have that λAM , A ∈ RT , is a
generator of ΛM if and only if gcd(A,M) = 1. Note that if α ∈ F∗q , then ΛαM = ΛM ,
so we may assume, in case of convenience, M is a monic polynomial.

The irreducible polynomial p(u) = Irr(λM , u, k) ∈ k[u] of λM is given by

p(u) = ΨM (u) :=
∏
A∈RT

gcd(A,M)=1
degA<degM

(u− λAM ).

The polynomial ΨM (u) is called the M–th cyclotomic polynomial.
Let kM := k(ΛM ) = k(λM ). Then kM/k is an abelian extension with Galois group

GM := Gal(kM/k) ∼=
(
RT /(M)

)∗ the multiplicative group of invertible elements of
RT /(M). The isomorphism is given as follows. For σ ∈ GM , σλM is a generator of
ΛM . Hence σλM = λAM for A ∈ RT relatively prime to M . We have that A is unique
modulo M . So σ 7→ A mod M is the isomorphism. Thus

[kM : k] = |GM | =
∣∣(RT /(M)

)∗∣∣ =: Φ(M).

This result is the analogue of Gal(Q(ζm)/Q) ∼= Um :=
(
Z/mZ

)∗, where Um denotes
the group of integers modulo m relatively prime to m, ΨM (u) is the analogue of the
classical cyclotomic polynomial Φm(x) =

∏
1≤i≤m

gcd(i,m)=1
(x−ζim) and, Φ(M) is the ana-

logue of the classical Euler phi function: ϕ(m) = |{i ∈ Z | 1 ≤ i ≤ m, gcd(i,m) =
1}|. We have that Φ(M) is a multiplicative function: Φ(MN) = Φ(M)Φ(N) for
M,N ∈ RT with gcd(M,N) = 1. If P ∈ RT is an irreducible polynomial and n ∈ N
then Φ(Pn) = qnd − q(n−1)d = q(n−1)d(qd − 1).

The ramification in the extension kPn/k with P ∈ R+
T and n ∈ N is given by the

following result which can be found with complete proofs in [17, Section 3.2].

Theorem 3.1. The prime P is fully ramified in kPn/k. The ramification index is eP =
Φ(Pn) = [kPn : k] = q(n−1)d(qd − 1), where d = degP . Any other finite prime in k
is unramified in kPn/k. If P = p∞, eP = e∞ = ep∞ = q − 1, fP = f∞ = fp∞ = 1,
hP = h∞ = hp∞ = Φ(M)/(q − 1).

The extension kM/k is a geometric extension, that is, the field of constants of kM is
Fq and every subextension k $ K ⊆ kM is ramified.

One important fact when we consider cyclotomic function fields, is the behavior of
p∞ in any kM/k where always e∞ = q − 1 and f∞ = 1. In particular p∞ is always
tamely ramified. Furthermore, for any subextension L/K with k ⊆ K ⊆ L ⊆ kM for
some M ∈ RT , if the prime divisors of K dividing p∞ are unramified, then they are
fully decomposed.

In any extension kM/k, the inertia group of p∞ is G0 ∼= F∗q ⊆
(
RT /(M)

)∗ ∼= GM .
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4 The maximal abelian extension of k
Let A be the maximal abelian extension of k. The expression of A can be given
explicitly, namely,A is explicitly generated for suitable finite extensions of k, each one
of which is generated by roots of an explicit polynomial. Indeed A is the composite of
three pairwise linearly disjoint extensions E/k, k(T )/k and k∞/k.

E/k: Consider the usual cyclotomic extensions of k, that is, the constant extensions of
k. So E =

⋃∞
n=1 Fqn(T ). We have

GE := Gal(E/k) ∼= Ẑ ∼=
∏
p prime

Zp,

where Ẑ is the Prüfer ring and Zp, p a prime number, is the ring of p–adic numbers.
We have that E/k is an unramified extension.

k(T )/k: Consider the union of all Carlitz–Hayes cyclotomic function fields k(T ) :=⋃
M∈RT kM . We have

GT := Gal(k(T )/k) ∼= lim←
M∈RT

(
RT /(M)

)∗
.

k∞/k: The field Ek(T ) is an abelian extension of k but can not be the maximal one
since p∞ is tamely ramified in Ek(T )/k and there exist abelian extensions K/k where
p∞ is wildly ramified. For instance, consider K = k(y) where yp − y = T . Then
K/k is a cyclic extension of degree p, where p is the characteristic of k and p∞ is the
only ramified prime in K/k and it is wildly ramified.

We change our “variable” T by T ′ = 1/T and we now consider the cyclotomic
function fields corresponding to the variable T ′ instead of T . Namely

k(T ′) = k(1/T ) :=
⋃

M ′∈RT ′

k(ΛM ′), RT ′ = Fq[T ′].

We have that k(T ′) shares much with k(T ). For instance, if q = p2 and zp − z =
T 2+T+1
T (T+1) , then K := k(z) ⊆ k(T ) ∩ k(T ′).

In order to find some subextension of k(T ′) linearly disjoint to k(T ), consider LT ′ :=⋃∞
m=1 k(Λ(T ′)m). In LT ′/k the only ramified primes are p∞, which is totally ramified,

and the prime p0 corresponding to the zero divisor of T . The prime p0 is now the
infinite prime in k(T ′) and it is tamely ramified with ramification index q − 1. Let

G′0
∼= F∗q ∼=

(
RT ′/(T

′)
)∗ be the inertia group of p0. Then k∞ := L

G′0
T ′ is an abelian

extension of k where p∞ is the only ramified prime and it is totally wildly ramified,
that is, for any finite extension F/k, k $ F ⊆ k∞, p∞ is totally ramified in F and
has no tame ramification. This is equivalent to have that the Galois group and the first
ramification group are the same.

The extension B := k(T ) · k∞ ·E is an abelian extension with k(T ), k∞, E pairwise
linearly disjoint. Why A = B? Hayes’ proof answers this question.



Kronecker–Weber Theorem in characteristic p 11

5 Reciprocity Law

Consider the idèle group Jk of k which is defined as

Jk := {(. . . , xp, . . .) ∈
∏
p∈Pk

kp | xp ∈ O∗p for almost all p}.

Here Pk denotes the set of all prime divisors in k, k∗p is the completion of k at p, Op is
the valuation ring at p in kp, k∗p = kp \ {0} and O∗p is the group of units of Op.

The topology of Jk is given as follows: a basis of the open sets consists of the
subsets

∏
p∈Pk Ap where Ap ⊆ k∗p is an open set for all p and Ap = O∗p for almost all

p ∈ Pp.
The idèle class group of k is defined by Ck = Jk/k

∗ where k∗ is embedded in Jk
via the diagonal map. Consider a finite abelian extension K/k. Let S be a finite set of
prime divisors of k such that S contains all the ramified primes inK. Let IS be the free
abelian group generated by Pk \ S. Let ψK/k : IS → Gal(K/k), ψK/k(p) =

[K/k
p

]
be

the Artin map.
We say that the reciprocity law holds forK/k if there exists a group homomorphism

ψ : Jk → Gal(K/k) such that

(a).- ψ is continuous,

(b).- ψ(k∗) = 1,

(c).- ψ((x)) = ψK/k((x)
S) for x ∈ JSk := {(xp)p∈Pk | xp = 1 for p ∈ S}, where S

consists of the ramified primes in K/k and (x)S :=
∏

p/∈S p
vp(xp) ∈ IS .

In this case k∗ ⊆ kerψ so ψ induces ψ̃ : Ck = Jk/k
∗ → Gal(K/k). If ψ exists, it is

unique.
The global class field theory is given by the following theorem.

Theorem 5.1 (Takagi–Artin). (a).- Every finite abelian extension K/k satisfies the
reciprocity law.

(b).- The Artin map ψK/k is surjective and kerψK/k = k∗NK/k(JK) where

NK/k : JK → Jk

is the norm map. Thus ψK/k induces an isomorphism from Ck/NK/k(CK) onto
Gal(K/k).

(c).- (Existence Theorem). For each open subgroup N of finite index in Ck, there
exists a unique finite abelian extension K/k such that NK/kCK = N .

PROOF: See [5].
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6 The proof of David Hayes

The proof of D. Hayes is given in [7]. Let B = k(T )k∞E. The question is why B is
the maximal abelian extension of k. First, Hayes constructed a group homomorphism
ψ : Jk → Gal(B/k). Since k(T ), k∞ and E are pairwise linearly disjoint, we have
Gal(B/k) ∼= G(T ) × G∞ × GE where G(T ) = Gal(k(T )/k), G∞ = Gal(k∞/k) and
GE = Gal(E/k) ∼= Ẑ.

For his construction, Hayes decomposed J = Jk as the direct product of four sub-
groups and defined ψ directly in each one of the four subgroups. Indeed, the map is
trivial on one factor and the other three factors map into G(T ), G∞ and GE respec-
tively. The factorization is given as follows:

J ∼= k∗ × UT × k(1)p∞ × Z

both algebraically and topologically. Here k∗ is the diagonal in J . Next, let kp∞ be
the completion of k at p∞. If ξ ∈ k∗p∞ , ξ can be written uniquely as ξ = uπn∞ where
π∞ = 1/T , which is a prime element at p∞, u ∈ U∞ = O∗p∞ and n ∈ Z. Then the

group k(1)p∞ is defined by k(1)p∞ := ker(sgnp∞) ∩ U∞, where sgnp∞ : k∗p∞ → k∗ is given

by sgnp∞(ξ) = u mod π∞. We have that k(1)p∞ × Z is isomorphic to ker(sgnp∞) with
isomorphism (α, n) 7→ απn∞. Finally let UT := {(xp)p∈Pk ∈ J | xp∞ = 1 and xp ∈
O∗p for all p}.

The next step in Hayes’ construction consisted in proving that there exists a natural
isomorphism ψT : UT → G(T ), both algebraically and topologically, and that k(1)p∞ is
naturally isomorphic to G∞ ∼= {f(1/T ) ∈ Fq[[1/T ]] | f(0) = 1} being the isomor-
phism denoted by ψ∞.

Now ψZ : Z→ GE ∼= Ẑ is the map such that ψZ(1) is the Frobenius automorphism.
Therefore ψZ is a dense continuous monomorphism. In short, we have

ψT : UT
∼=−→ G(T ), ψ∞ : k(1)p∞

∼=−→ G∞ and ψZ : Z ↪→ Ẑ.

We proceed with Hayes definition of the map ψ. Let ψ : J → Gal(B/k) ∼= G(T ) ×
G∞ ×GE given as follows. For ξ ∈ J we write ξ = dT (ξ)ξT ξ∞ξZ where

dT (ξ) = sgn(ξp∞) ·
∏
p∈Pk
p6=p∞

π
vp(ξp)
p ∈ k∗, πp = P with (P ) =

p

p
degP
∞

, P ∈ R+
T ,

ξT ∈ UT , ξ∞ ∈ k(1)p∞ , ξZ ∈ Z

(note that ξ∞ 6= ξp∞) and this decomposition of ξ corresponds to the decomposition
J ∼= k∗ × UT × k(1)p∞ × Z. The homomorphism ψ is finally defined by

ψ(ξ) = ψT (ξ
−1
T )ψ∞(ξ−1

∞ )ψZ(ξZ).
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Then ψ is a continuous dense homomorphism from J into Gal(B/k) whose kernel is
k∗.

The final step in Hayes’ proof is the following. Let A be the maximal abelian
extension of k. We have B ⊆ A. Let ψ∗ : J → Gal(A/k) be the reciprocity law
homomorphism. Let rest : Gal(A/k) → Gal(B/k) be the restriction map. Then we
obtain rest ◦ψ∗ = ψ and since kerψ = kerψ∗ = k∗, it follows that ker rest = 1 so that
rest = Id and A = B. This proves the Kronecker–Weber Theorem in characteristic
p > 0.

Hayes also proved thatA = k(T )k(T ′) with T ′ = 1/T . However, as we have noticed,
k(T ) and k(T ′) are not linearly disjoint.

7 Witt vectors and the conductor
One of the main tools for another proof of the Kronecker–Weber Theorem in positive
characteristic is the study of p–cyclic extensions of k. As we saw, in the classical case,
the substantial part of the proof of the Kronecker–Weber Theorem is wild ramification.
The same holds in characteristic p. We have already used, as examples, some Artin–
Schreier extensions. In this section we recall some arithmetic properties of cyclic
extensions of degree pn for fields of characteristic p, namely, some results obtained by
Ernst Witt [30] and Ludwig Schmid [24].

All the theory began with the results of Emil Artin and Otto Schreier [2]. A. Albert
[1] and E. Witt [30] proved that if F admits a cyclic extension of degree p, then it
admits cyclic extensions of degree pn for any n ∈ N. Witt’s approach, stated in
Theorem 7.1 below, opened the door for the construction of Witt vectors.

Theorem 7.1 (Witt [29]). Let E/F be a cyclic extension of degree pn−1, n ≥ 2. Then
to construct a cyclic extension L/F of degree pn containing E, the following objects
are chosen arbitrarily:
(a).- A generator ϕ of Gal(E/F ).
(b).- An element χ ∈ F∗p.
(c).- A solution δ ∈ E of TrE/F δ = χ.
(d).- A solution γ ∈ E of (ϕ− 1)γ = ℘δ.

Then L is obtained as L = E(θ) where ℘θ = γ. Any other extension of this type
can be obtained substituting γ by γ + c with c ∈ F .

This result was the key for Schmid’s construction [24] to generate cyclic extensions
of degree pn in characteristic p. Once he gave a construction of cyclic extensions of
degree pn, he also found in [22] a reciprocity formula for the local norm symbol of
cyclic extensions of degree p. Shortly after Schmid’s results, Witt [30] generalized
Schmid’s reciprocity norm formula to cyclic extensions of degree pn and found a vec-
tor generation of Schmid’s construction of cyclic extensions of degree pn. This vector
generation is what we call Witt vectors.
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Witt vectors are constructed as follows. For a vector ~x = (x1, x2, . . .) with a count-
able (finite or numerable) number of components xn, in characteristic 0, the ghost
components of ~x are defined by

x(t) := xp
t−1

1 + pxp
t−2

2 + · · ·+ pt−1xt =

t∑
i=1

pi−1xp
t−i

i , t = 1, 2, . . . (7.1)

Conversely, xt can be computed recursively as a polynomial in x(1), . . . , x(t) from
equation (7.1). This bijective correspondence is expressed by

~x = (x1, x2, . . . | x(1), x(2), . . .).

The sum
•
+, the difference

•
− and the product

•
× of Witt are defined by

~x
•
+–
×
~y =

(
?, ?, . . . | x(1)+–

×
y(1), x(2)+–

×
y(2), . . .

)
.

That is, the operations on the ghost components are term by term and on the regular
components are computed from the result obtained in the ghost components.

The above construction can be specified as follows. Consider three countable fam-
ilies

{
xi, yj , zl}Ni,j,l=1 of algebraically independent elements over Q where N ∈ N ∪

{∞} and let R = Q[xi, yj , zl]i,j,l. Let RN be the set R×R× · · · ×R× · · ·︸ ︷︷ ︸
N

. We

denote also by RN the ring with the underlying base set RN itself and the usual opera-
tions term by term (this construction corresponds to the one for the ghosts components)
and let RN be the ring with underlying set RN again but with the following Witt op-
erations. Let ϕ : RN → RN be given by ϕ(a1, a2, . . . , aN ) =

(
a(1), a(2), . . . , a(N)

)
.

We have that ϕ is a bijective map and the inverse map ψ : RN → RN is given by
ψ
(
a(1), a(2), . . . , a(N)

)
= (a1, a2, . . . , aN ). Then the Witt operations

•
+,

•
−,

•
× are

given by

~a
•
+–
×
~b :=

(
aϕ+–
×
bϕ
)ϕ−1

=
(
aϕ+–
×
bϕ
)ψ
.

For m ∈ N we denote

~0 := (0, 0, . . . , 0, . . .), ~1 = (1, 0, . . . , 0, . . .), ~m = m~1 = ~1
•
+ ~1

•
+ · · ·

•
+ ~1︸ ︷︷ ︸

m times

.

Here ~0 is the zero element of RN and ~1 is the unity of RN .
Witt operations can be performed mod p and thus if E is a field of characteristic p,

we define
WN (E) = {(x1, x2, . . .) | xi ∈ E}, N ∈ N ∪ {∞}

with the Witt operations mod p. WN (E) is a commutative ring with unity called the
ring of Witt vectors of length N with coefficients in E. We have(

~x
•
+–
×
~y
)p

= ~xp
•
+–
×
~yp for all ~x, ~y ∈WN (E).
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An element ~x = (x1, . . . , xn, . . .) ∈ WN (E) is invertible if and only if x1 6= 0. We
also obtain that ~pm = pm~1 =

(
0, 0, . . . , 0︸ ︷︷ ︸

m

, 1, 0, . . .).

As an example, if N = n ∈ N then Wn(Fp) ∼= Z/pnZ as rings and therefore
Wn(Fp) is of characteristic pn. We also have that W∞(Fp) ∼= Zp, where Zp is the ring
of p–adic numbers and has characteristic 0.

As we have mentioned, Witt used his vector construction to describe cyclic exten-
sions of degree pn in characteristic p. Let us describe how this was done. Let F be
an arbitrary field of characteristic p and let Wn(F ) be the ring of Witt vectors. Let
E/F be a finite Galois extension with Galois group G = Gal(E/F ). If ~y ∈ Wn(E),
~y = (y1, . . . , yn) then for σ ∈ G we define

σ~y = ~yσ := (σy1, . . . , σyn),

and the trace TrE/F : Wn(E)→Wn(F ) is defined by

TrE/F ~y =

•∑
σ∈G

σ~y =
(

TrE/F y1, ?, . . . , ?
)
∈Wn(F ).

If y1 ∈ E is such that TrE/F y1 6= 0, then TrE/F ~y is invertible in Wn(F ). Further,

we have σ
(
~y
•
+
×
~z) = σ~y

•
+
×
σ~z. We obtain the analogue of Hilbert’s Theorem 90. That

is, if ϕ : G → Wn(E) is a map with ϕ(σ) = ~aσ such that ~aσ
•
+ σ~aτ = ~aστ for all

σ, τ ∈ G, then there exists~b ∈Wn(E) such that ~aσ = (1
•
− σ)~b for all σ ∈ G.

For ~y ∈ Wn(E) we define ℘~y := ~yp
•
− ~y = (yp1 , . . . , y

p
n)

•
− (y1, . . . , yn). We have

℘~x = 0 ⇐⇒ ~x ∈ Wn(Fp). Also for any ~x ∈ Wn(F ) there exists ~y ∈ Wn(F̄ ),
F̄ a fixed algebraic closure of F , such that ℘~y = ~x. The proof uses the analogue of
Hilbert’s Theorem 90. Furthermore if ~y0 is a fixed solution of ℘~y = ~x, then all the
solutions are given by ~y0

•
+ ~m, m ∈ {0, 1, . . . , pn − 1}.

The generation of cyclic extensions of degree pn is given by next theorem.

Theorem 7.2. Let F be any field of characteristic p and ~x ∈ Wn(F ). Then the equa-
tion ℘~y = ~x defines a cyclic extension of F : E = F (~y) = F (y1, . . . , yn) = F (℘−1~x).
Furthermore Gal(E/F ) ∼= Cpn−m where y1, . . . , ym ∈ F , ym+1 /∈ F . Therefore E/F
is a cyclic extension of degree pn if and only if x1 /∈ ℘(F ) where ~x = (x1, . . . , xn). In
this case, G = Gal(E/F ) is generated by σ~y := ~y

•
+ ~1.

Conversely, if E/F is a cyclic extension of degree pn, there exists ~x ∈Wn(F ) such
that E = F (℘−1~x), that is, every extension of degree pn is obtained by means of an
equation of the type ℘~y = ~x.

Finally, if E = F (~y) = F (~z) with ~y, ~z ∈ Wn(E) is a cyclic extension of degree
pn with ℘~y = ~a, ℘~z = ~b with ~a,~b ∈ Wn(F ), then there exist ~j ∈ Wn(Fp) invertible,
equivalently, j relatively prime to p, and ~c ∈ Wn(F ) such that ~y = ~j

•
× ~z

•
+ ~c and

~a = ~j
•
× ~b

•
+ ℘c and conversely.
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7.1 The conductor

For the details of this section the reader may consult [15]. There are several concepts
of “conductor”. In the proof of the Kronecker–Weber Theorem this concept will be
considered. We need to know all cyclic p–extensions of k with ramification at a fixed
prime. However, it is necessary to bound the measure of this ramification. The way we
delimit the ramification type is precisely by means of the conductor. As an example,
for any α ∈ N, there exists a cyclic extension K of k of degree p such that K ⊆
k(ΛPα) but K 6⊆ k(ΛPα−1). For instance, take K = k(y) with yp − y = 1

Tλ
,

gcd(λ, p) = 1 and let λ→∞.
We are interested only in congruence function fields, that is, function fields with

finite field of constants. Let k = Fq(T ), RT = Fq[T ]. Let M ∈ RT \ {0} be a
nonzero polynomial. Let χ :

(
RT /(M)

)∗ → C∗ be a Dirichlet character. If M ∈ RT
then a Dirichlet character χ has conductor M if χ can be defined modulo M but can
not be defined modulo N where N is a divisor of M and N 6= M . In particular, if
P ∈ R+

T a Dirichlet character χ has conductor Pα if and only if χ can be defined
modulo Pα, χ :

(
RT /(P

α)
)∗ → C∗ but can not be defined modulo Pα−1. If fχ is

the conductor as Dirichlet character of χ and if f′χ is the Artin conductor of χ, then
fχ = f′χ.

Now we have that the local conductor of k(ΛPα)/k at P is Pα and 1 for any other
Q 6= P , Q ∈ R+

T . Furthermore fK = Pα ⇐⇒ K ⊆ k(ΛPα) and K * k(ΛPα−1).

7.2 The conductor according to Schmid

The computation of the conductor of cyclic extensions of degree pn of k is one of
the main ingredients of the combinatorial proof of the Kronecker–Weber Theorem.
We describe briefly the results of Hasse, Witt and Schmid relative to some arithmetic
properties of p–cyclic extensions and particularly the result of Schmid [24] about the
conductor.

First, from the normal form of an Artin–Schreier extension found by Helmut Hasse,
we obtain

Proposition 7.3 (Hasse [6]). Let K/k be a cyclic extension of degree p such that K ⊆
k(ΛPβ ) for some β ∈ N, P ∈ R+

T . Then there exists y ∈ K such that K = k(y) with
℘y = yp−y = h(T ) ∈ k with h(T ) = g(T )

P (T )λ
with g(T ) ∈ RT , gcd(P (T ), g(T )) = 1,

deg g ≤ degP λ = λ degP , λ > 0 and gcd(λ, p) = 1.
The conductor of the extension K/k is P λ+1.

From Proposition 7.3 and Schmid’s results [24] on the arithmetic generation of p–
cyclic extensions based on Witt vectors, we obtain

Corollary 7.4 (Schmid [24]). Let K/k be a cyclic extension of degree pn with K ⊆
k(ΛPα) for some α ∈ N. Then there exists ~y such that K = k(~y) with ℘~y = ~yp

•
−
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~y = ~β ∈ Wn(k) where βi(T ) =
gi(T )

P (T )λi
with gi(T ) ∈ RT , λi ≥ 0 and if λi > 0 then

gcd(gi(T ), P (T ) = 1 and gcd(λi, p) = 1. Finally λ1 > 0.

From the norm residue symbol obtained by Schmid [22] for cyclic extensions of de-
gree p, generalized by Witt [30], Schmid himself [24] obtained the following invariants
to compute the conductor of a p–cyclic extension K/k:

Let K = k(~y) be such that ℘~y = ~yp
•
− ~y = ~β ∈ Wn(k),

(
βi
)
= ci

pλi
with λi ≥ 0

and if λi > 0, then gcd(ci, p) = 1 and gcd(λi, p) = 1 where p is the prime divisor
associated to P .

Let Mn := max
1≤i≤n

{pn−iλi}. Note that Mi = max{pMi−1, λi}, M1 < M2 < · · · <
Mn. Then

Theorem 7.5 (Schmid [24]). With the above conditions we have that the local conduc-
tor of K/k is

fK = PMn+1.

Corollary 7.6. LetK/k be a cyclic extension of degree pn withK ⊆ k(ΛPα) for some
α ∈ N. Then Mn + 1 ≤ α.

8 The Kronecker–Weber–Hayes Theorem
In this section we discuss another proof of Hayes’ result. The detailed proofs of the
results of this section can be found in [18, 19, 20]. Let k(T ) :=

⋃
M∈RT k(ΛM ),

F∞ :=
⋃
m∈N Fqm , k∞ := L

G′0
(T ′) where L(T ′) :=

⋃∞
n=1 k(ΛT−n) and G′0 ∼= F∗q is the

inertia group of the zero divisor of T in L(T ′).

Theorem 8.1 (Kronecker–Weber–Hilbert–Hayes). The maximal abelian extension of
k = Fq(T ) is A = k(T )F∞k∞.

To prove Theorem 8.1 it suffices to prove that any finite abelian extension of k is
contained in kNFqmkn for some N ∈ RT , m,n ∈ N and where the field kn is given

by kn :=
(⋃n+1

r=1 k(ΛT−r)
)G′0 = k(ΛT−n−1)G

′
0 . Theorem 8.1 will be a consequence of

the following theorem.

Theorem 8.2. (a).- If K/k is a finite tamely ramified abelian extension such that
P1, . . . , Pr ∈ RT and possibly p∞ are the ramified primes, then

K ⊆ Fqmk(ΛP1···Pr) for some m ∈ N.

(b).- If K/k is a cyclic extension of degree pn where P ∈ R+
T is the only ramified

prime and it is totally ramified and p∞ is fully decomposed, then K ⊆ k(ΛPα)
for some α ∈ N.
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(c).- If K/k is a cyclic extension of degree pn where P ∈ R+
T is the only rami-

fied prime, not necessarily fully ramified, we have K ⊆ Fqmk(ΛPα) for some
m,α ∈ N.

Let K/k be a finite abelian extension. Let G := Gal(K/k) ∼= Cn1 × · · · × Cnl ×
Cpa1 × · · · × Cpah where gcd(ni, p) = 1, 1 ≤ i ≤ l and ai ∈ N, 1 ≤ j ≤ h. Let
Ki ⊆ L be such that Gal(Ki/k) ∼= Cni , 1 ≤ i ≤ l and let Rj ⊆ K be such that
Gal(Rj/k) ∼= Cpaj , 1 ≤ j ≤ h. To prove Theorem 8.1 it suffices to show that each
Ki and each Rj are contained in k(ΛN )Fqmkn for some N ∈ RT , m,n ∈ N.

To obtain Theorem 8.1 from Theorem 8.2, first we give the following result.

Theorem 8.3. LetK/k be a cyclic extension of degree pn where P1, . . . , Pr ∈ R+
T and

possibly p∞, are the ramified prime divisors. Then K = k(~y) where

~yp
•
− ~y = ~β = ~δ1

•
+ · · ·

•
+ ~δr

•
+ ~µ,

with βp1 − β1 /∈ ℘(k), δij =
Qij

P
eij
i

, eij ≥ 0, Qij ∈ RT and if eij > 0, then p - eij ,

gcd(Qij , Pi) = 1 and deg(Qij) < deg(P eiji ), and µj = fj(T ) ∈ RT with p - deg fj
when fj 6∈ Fq.

SKETCH OF PROOF: See [13]. The proof of Theorem 8.3 is as follows. Consider a
cyclic extension K = k(~y), ℘~y = ~yp

•
− ~y = ~β ∈Wn(k), ~y ∈Wn(K) a Witt vector of

length n inK. We decompose each component βj in partial fractions as usual, we then
consider the ghost components

(
β(1), . . . , β(n)

)
. From (7.1) follows that they have a

decomposition of the form

β(j) =
r∑
i=1

Q′ij

P
e′ij
i

+ f ′j(T ) for all 1 ≤ j ≤ n.

We then write

(
β(1), . . . , β(n)

)
=
(
γ
(1)
1 , . . . , γ

(n)
1

)
+ · · ·+

(
γ(1)r , . . . , γ(n)r

)
+
(
ξ(1), . . . , ξ(n)

)
with γ(j)i =

Q′ij

P
e′
ij
i

, 1 ≤ i ≤ r, 1 ≤ j ≤ n and ξ(j) = f ′j(T ).

Now we return to the regular components. The second simplification is no other
than Corollary 7.4.

With the decomposition given in Theorem 8.3, we obtain

Proposition 8.4. If part (b) of Theorem 8.2 holds, then if K = k(~y) where ℘~y = ~yp
•
−

~y = ~β with β =
(
β1, . . . , βn | β(1), . . . , β(n)

)
, βi in the normal form (Theorem 8.3),

β1, . . . , βr ∈ Fq, βr+1 /∈ Fq, we have K ⊆ Fqpnk(ΛPα) for some α ∈ N.



Kronecker–Weber Theorem in characteristic p 19

Therefore Theorem 8.2 (c) is an immediate consequence of Theorem 8.2 (b) and
Proposition 8.4. According to the decomposition provided by Theorem 8.3, if Ri =
k(~δi) and R′ = k(~µ), it follows from Theorem 8.2 (a) and (b) and from Proposition
8.4 that Ri ⊆ Fqmik(ΛPαii ) for some αi,mi, 1 ≤ i ≤ r and R′ ⊆ Fqmkn for some
m,n ∈ N. Thus M ⊆ k(ΛN )Fqmkn for some N ∈ RT and n,m ∈ N and Theorem
8.1 follows.

To prove part (a) of Theorem 8.2, first we observe

Proposition 8.5. Let P ∈ R+
T be a tamely ramified in K/k. If e is the ramification

index of P in K, we have e|qd − 1 where d = degP .

The proof of Proposition 8.5 is similar to that of the classical case, that is, to a part
of the proof of Proposition 2.1.

The next step is to prove the analogue of Proposition 2.1. Here we consider a tamely
ramified abelian extensionK/k where P1, . . . , Pr are the finite prime divisors ramified
in K/k. Let P ∈ {P1, . . . , Pr} and with ramification index e. We consider k ⊆ E ⊆
k(ΛP ) with [E : k] = e. In E/k the prime divisor P has ramification e. Consider the
composite KE.

K KE

k E

From Abhyankar’s Lemma we obtain that the ramification of P inKE/k is e, so if we
consider H , the inertia group of P in KE/k and R := (KE)H . Then P is unramified
in R/k. Then it can be proved that K ⊆ Rk(ΛP ).

Continuing with this process r times we obtain that K ⊆ R0k(ΛP1···Pr) and where
R0/k is an extension such that the only possible ramified prime is p∞. Part (a) of
Theorem 8.2 is consequence of

Proposition 8.6. Let K/k be an abelian extension where at most a prime divisor p0 of
degree one is ramified and it is tamely ramified. ThenK/k is an extension of constants.

Wild ramification is the key fact that distinguishes the positive characteristic case
from the classical one in the proof of the Kronecker–Weber Theorem. In the classical
case, the proof was based on the fact that for p ≥ 3, there is only one cyclic extension
of degree p over Q where p is the only ramified prime. The case p = 2 is slightly harder
since there are three quadratic extensions where 2 is the only finite prime ramified.

In the function field case the situation is different. Fix a monic irreducible polyno-
mial P ∈ R+

T of degree d. Consider the Galois extension k(ΛP 2)/k and let GP 2 =
Gal(k(ΛP 2)/k). We have that GP 2 is isomorphic to the direct product of DP,P 2 =
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Gal(k(ΛP 2)/k(ΛP )) with H := Gal(k(ΛP )/k) ∼= Cqd−1.

F
H

D
P,P 2

k(ΛP 2)

D
P,P 2

k
H

k(ΛP )

If F := k(ΛP 2)H , then Gal(F/k) ∼= DP,P 2 . Note that DP,P 2 ∼= {A mod P 2 | A ∈
RT , A ≡ 1 mod P} is an elementary abelian p–group so that DP,P 2 ∼= Cup where
u = sd, q = ps. In F/k the only ramified prime is P , it is wildly ramified and u can
be chosen as large as we want. This is one of the reasons that the proof of the classical
case using ramification groups seems not to be applicable here.

Let P ∈ R+
T , α ∈ N and let d := degP . First we compute how many cyclic

extensions of degree pn are contained in k(ΛPα). Note that p∞ is fully decomposed
in K/k where K is any of these extensions. We have the exact sequence

1 −→ DP,Pα −→
(
RT /(P

α)
)∗ ϕ−→

(
RT /(P )

)∗ −→ 1

where

ϕ :
(
RT /(P

α)
)∗ → (

RT /(P )
)∗

A mod Pα 7→ A mod P
, DP,Pα = {N mod Pα | N ≡ 1 mod P}.

We may consider DP,Pα = {1 + hP | h ∈ RT , degh < degPα = dα}. To compute
the number of elements of order pn in DP,Pα we just have to consider the elements
1 + hP such that

(1 + hP )p
n ≡ 1 mod Pα but (1 + hP )p

n−1 6≡ 1 mod Pα. (8.1)

If we write A = 1 + gP 1+γ with gcd(g, P ) = 1 and deg g < d(α− γ − 1), then A
satisfies (8.1) precisely for γ satisfying⌈

α

pn

⌉
− 1 ≤ γ <

⌈
α

pn−1

⌉
− 1 (8.2)

where dxe denotes the ceiling function, that is, dxe is the minimum integer larger than
or equal to x. For each γ satisfying (8.2) there exist Φ(Pα−γ−1) different polynomials
g with gcd(g, P ) = 1 and deg g < d(α − γ − 1), that is, deg(gP 1+γ) < degPα.
Recall that Φ(Pα−γ−1) =

∣∣(RT /(Pα−γ−1)
)∗∣∣.

Therefore we obtain that the number of elements of order pn in Gal(k(ΛPα)/k) is
equal to

q
d(α−

⌈
α

pn−1

⌉
)
(
q
d(
⌈

α
pn−1

⌉
−
⌈
α
pn

⌉
) − 1

)
.

Since each cyclic group of order pn has ϕ(pn) = pn−1(p− 1) different generators, we
obtain
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Proposition 8.7. Let vn(α) be the number of cyclic groups of order pn contained in(
RT /(P

α)
)∗. Then

vn(α) =
q
d(α−

⌈
α

pn−1

⌉
)(
q
d(
⌈

α
pn−1

⌉
−
⌈
α
pn

⌉
) − 1

)
pn−1(p− 1)

.

Now we describe the behavior of p∞ in an Artin–Schreier extension K/k.

Proposition 8.8. Let K := k(y) where yp − y = α ∈ k with the normalized equation

yp − y = α =
r∑
i=1

Qi
P eii

+ f(T ) =
Q

P e1
1 · · ·P

er
r

+ f(T ),

where Pi ∈ R+
T , Qi ∈ RT , gcd(Pi, Qi) = 1, ei > 0, p - ei, degQi < degP eii ,

1 ≤ i ≤ r, f(T ) ∈ RT , with p - deg f when f(T ) 6∈ Fq.
The finite primes ramified in K/k are precisely P1, . . . , Pr. The prime p∞ is

(a).- decomposed if f(T ) = 0.

(b).- inert if f(T ) ∈ Fq and f(T ) 6∈ ℘(Fq) := {ap − a | a ∈ Fq}.
(c).- ramified if f(T ) 6∈ Fq (thus p - deg f ).

Note that any K ⊆ k(ΛPα) has conductor fK a divisor of Pα. Next, using the
Theory of Artin–Schreier, we compute the number of cyclic extensions K of k of
degree p such that P is the only ramified prime, p∞ decomposes and the conductor fK
divides Pα. From Proposition 8.8 follows that any such extension, written in normal
form, is given by an equation

℘y = yp − y =
Q

P λ
, λ > 0, p - λ, degQ < degP λ

and the conductor is fK = P λ+1, so that λ ≤ α− 1.
Now given another equation ℘z = zp− z = a written also in normal form and such

that k(y) = k(z), satisfies that a = j QP γ + ℘c with j ∈ {1, . . . , p − 1} and c = h
P γ

with pγ < λ. From these considerations, one may deduce that the number of different
cyclic extensions K/k of degree p such that the conductor K is fK = P λ+1 is equal

to 1
p−1 Φ(P

λ−
[
λ
p

]
) where [x] denotes the integer function. So, the number of these

extensions with conductor a divisor of Pα is ω(α)
p−1 where

ω(α) =
α−1∑
λ=1

Φ(P
λ−
[
λ
p

]
). (8.3)

Computing (8.3) and comparing with Proposition 8.7 we obtain ω(α)
p−1 = v1(α).
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In other words, every cyclic extension K/k of degree p such that P is the only
ramified prime, p∞ decomposes fully in K/k and fK | Pα is contained in k(ΛPα).
Therefore the Kronecker–Weber Theorem holds in this case.

Now we proceed with the cyclic case of degree pn. In other words, we want to
prove that any cyclic extensions of degree pn of conductor a divisor Pα and where p∞
decomposes fully, is contained in k(ΛPα).

The proof is by induction on n. The case n = 1 is the case of Artin–Schreier
extensions. We assume that any cyclic extension Kn−1 of degree pn−1, n ≥ 2 with
P the only ramified prime and with p∞ fully decomposed in Kn−1 and such that
fKn−1 | P δ is contained in k(ΛP δ), δ ∈ N.

We considerKn a cyclic extension of k of degree pn such that P is the only ramified
prime, P is fully ramified, p∞ is fully decomposed and fKn | Pα. Let Kn−1 be the
subfield of Kn of degree pn−1 over k. Let Kn/k be generated by the Witt vector
~β = (β1, . . . , βn), that is, Kn = k(~y) with ℘~y = ~yp

•
− ~y = ~β and ~β written is

the normal form described by Schmid. Then Kn−1/k is given by the Witt vector
~β′ = (β1, . . . , βn−1).

Let ~λ = (λ1, . . . , λn−1, λn) be the Schmid’s vector of invariants, that is, each βi
is given by βi = Qi

Pλi
where Qi = 0, that is, βi = 0 or gcd(Qi, P ) = 1, degQi <

degP λi , λi > 0 and gcd(λi, p) = 1. Since P is fully ramified, λi > 0. The next
step is to find the number of different extension Kn/Kn−1 that can be constructed by
means of βn. If βn 6= 0, each equation in normal form is given by

℘yn = ypn − yn = zn−1 + βn

where zn−1 is the element of Kn−1 obtained by the Witt’s generation of Kn−1 with
the vector ~β′. In fact, formally, zn−1 is given by

zn−1 =
n−1∑
i=1

1
pn−1

[
yp

n−i

i + βp
n−1

i −
(
yi + βi + zi−1

)pn−i]
with z0 = 0.

As in the case n = 1, we have that there exist at most Φ(P
λn−
[
λn
p

]
) fields Kn with

λn > 0. The conductor of Kn is PMn+1 with Mn = max{pMn−1, λn} and PMn−1+1

is the conductor of Kn−1. It follows that pMn−1 ≤ α− 1, λn ≤ α− 1 and fKn−1 | P δ

with δ =

[
α− 1
p

]
+ 1. By the induction hypothesis, the number of such fields Kn−1

is vn−1(δ).
Let tn(α), n, α ∈ N be the number of cyclic extensions Kn/k of degree pn with

P the only ramified prime, fully ramified, p∞ fully decomposed and fKn | Pα. To
prove the Kronecker–Weber Theorem it suffices to show tn(α) ≤ vn(α). We have
t1(α) = v1(α) = ω(α)

p−1 . By induction hypothesis we assume tn−1(δ) = vn−1(δ). In
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general we have tn(α) ≥ vn(α). Now we obtain by direct computation

vn(α)

vn(δ)
=
q
d(α−

⌈
α
p

⌉
)

p
. (8.4)

Considering the case βn = 0, the number of fieldsKn containing a fixed fieldKn−1
obtained in (8.3) is

1 + ω(α) = q
d(α−

⌈
α
p

⌉
)
.

Finally, with the substitution yn 7→ z := yn + jy1, j = 0, 1, . . . , p − 1 in (8.3) we
obtain ℘z = zp − z = βn + jβ1.

That is, each extension obtained in (8.3) is obtained p times or, equivalently, for each
βn the same extension is obtained with βn, βn + β1, . . . , βn + (p − 1)β1. It follows

that for each Kn−1 there are at most 1+ω(α)
p = 1

pq
d(α−

⌈
α
p

⌉
) such extensions Kn. From

equation (8.4) we obtain

tn(α) ≤ tn−1(δ)
(1
p
q
d(α−

⌈
α
p

⌉
)
)
= vn(α).

This proves Theorem 8.2 (b) and Theorem 8.1.

9 Final remarks
The analogue of the Kronecker–Weber Theorem does not hold for number fields other
than Q. For instance, if K := Q(

√
5), then L := Q( 4

√
5) is an abelian extension of K

but L/Q is not a normal extension and in particular L is not contained in any K(ζn)
since K(ζn)/Q is an abelian extension.

As we have mentioned, the content of Hilbert’s Twelfth Problem is to find an explicit
description of the maximal abelian extension of any number field K. This has been
achieved only for imaginary quadratic fields at the end of the 1920’s. Class field theory
gives a full account of abelian extensions of global fields and local fields by means of
fields belonging to “congruence groups” or “norm groups”.

In the case of congruence function fields, Hayes described the maximal abelian
extension of an arbitrary congruence function field F by means of rank one Drinfeld
modules [8, 9]. Thus, we may consider that Hilbert’s Twelfth Problem has been solved
for function fields. Recently D. Zywina [31] constructed a continuous homomorphism
ρ : Gal(F ab/F ) → CF , where F ab is the maximal abelian extension of F and CF is
the idèle class group, whose inverse is the Artin Map of F and as a consequence he
obtained an explicit description of F ab.
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