GENUS FIELDS OF CYCLIC l-EXTENSIONS OF RATIONAL FUNCTION FIELDS

VÍCTOR BAUTISTA-ANCONA, MARTHA RZEDOWSKI-CALDERÓN, AND GABRIEL VILLA-SALVADOR

Abstract

We give a construction of genus fields for Kummer cyclic $l-$-extensions of rational congruence function fields, l a prime number. First we find this genus field for a field contained in a cyclotomic function field using Leopoldt's construction by means of Dirichlet characters and the Hilbert class field defined by Rosen. The general case follows from this. This generalizes the result obtained by Peng for a cyclic extension of degree l.

1. Introduction

The concept of genus field was defined by Gauss [7] in 1801 in the context of binary quadratic forms. For any finite extension K / \mathbb{Q}, the genus field is defined as the maximal unramified extension $K_{\mathfrak{g e}}$ of K such that $K_{\mathfrak{g e}}$ is the composite of K and an abelian extension k^{*} of $\mathbb{Q}: K_{\mathfrak{g e}}=K k^{*}$. This definition is due to A. Frölich [6]. If K_{H} denotes the Hilbert class field of $K, K \subseteq K_{\mathfrak{g e}} \subseteq K_{H}$. H. Leopoldt [10] determined the genus field $K_{\mathfrak{g e}}$ of an abelian extension K of \mathbb{Q} using Dirichlet characters.

For function fields, the notion of Hilbert class field has no proper analogue since the maximal abelian extension of any congruence function field K / \mathbb{F}_{q} contains $K_{m}:=K \mathbb{F}_{q^{m}}$ for all positive integers m and therefore the maximal unramified abelian extension of K is of infinite degree over K.
M. Rosen [14] gave a definition of an analogue of the Hilbert class field for a conguence function field K and a fixed finite nonempty set S_{∞} of prime divisors of K. Using this definition, a proper concept of genus field can be given along the lines of the classical case. R. Clement [4] considered a cyclic extension of $\mathbb{F}_{q}(T)$ of degree a prime number l dividing $q-1$ and found the genus field using class field theory. Later, S. Bae and J. K. Koo [3] generalized the results of Clement following the methods of Frölich [6]. In fact, Bae and Koo defined the genus field for global function fields and developed the analogue of the classical genus theory (see Definition 2.2). B. Anglès and J.-F. Jaulent [1] used narrow S-class groups to establish the fundamental results of genus theory for finite extensions of global fields, where S is an arbitrary finite set of places. Using the genus theory for quadratic function fields, $\mathrm{Y} . \mathrm{Li}$ and $\mathrm{S} . \mathrm{Hu}$ [11] obtained an analogue in the function field framework of the number field case by constructing infinitely many real (resp. imaginary) quadratic extensions K over $\mathbb{F}_{q}(T)$ whose ideal class group capitulates in a proper subfield of the Hilbert class field of K.

[^0]G. Peng [13] explicitly described the genus theory for Kummer function fields. C. Wittmann [17] extended Peng's results to the case $l \nmid q(q-1)$ and used them to study the l-part of the ideal class groups of cyclic extensions of prime degree l. Hu and $\mathrm{Li}[8]$ described explicitly the ambiguous ideal classes and the genus field of an Artin-Schreier extension of a rational congruence function field. In analogy with the number field case, S. Bae, S. Hu and H. Jung [2] defined the generalized Rédei-matrix of local Hilbert symbols with coefficients in \mathbb{F}_{l}. As applications they determined the generalized Rédei matrices for Kummer, biquadratic and Artin-Schreier extensions of $\mathbb{F}_{q}(T)$ and showed that their algorithm for finding the invariant λ_{2} for Kummer extensions is different and simpler compared to that of Wittmann. They used their results to determine completely the 4-rank of the ideal class group for a large class of Artin-Schreier extensions that have been used in cryptanalysis and which may lead to a possible method of attack against the discrete logarithm problem on an elliptic curve.

In [12] the genus field of a finite geometric abelian extension of $k:=\mathbb{F}_{q}(T)$ was described and as applications the genus fields of cyclic extensions of prime degree over k were found explicitly. The results of Peng and of Hu and Li can be obtained in this way. In that paper were obtained the p-cyclic extensions of k where p is the characteristic.

In this paper we use the results obtained in [12] to describe explicitly the genus field of cyclic extensions of degree l^{n} where $l^{n} \mid q-1$. The case $n=1$ is the result of Peng. Our methods are based on Leopoldt's ideas and therefore are very different from Peng's methods which are based on the global function field analogue of P. E. Conner and J. Hurrelbrink's exact hexagon [5]. In [12] we describe the case $n=1$ a little differently from how it was described originally. Here we show that using our methods it is possible to give the same description as the one in the original paper.

2. Cyclotomic function fields

First we give some notations and some results in the theory of cyclotomic function fields [16]. Let $k=\mathbb{F}_{q}(T)$ be a rational congruence function field, \mathbb{F}_{q} denoting the finite field of q elements. Let $R_{T}=\mathbb{F}_{q}[T]$ be the ring of polynomials, that is, we choose R_{T} as the ring of integers of $k . R_{T}^{+}$denotes the set of monic irreducible polynomials in R_{T}. For $N \in R_{T} \backslash\{0\}, \Lambda_{N}$ denotes the N-torsion of the Carlitz module and $k\left(\Lambda_{N}\right)$ denotes the N-th cyclotomic function field. For any function field $K / \mathbb{F}_{q}, K_{m}:=K \mathbb{F}_{q^{m}}$ denotes the constant field extension. For any $m \in \mathbb{N}, C_{m}$ denotes a cyclic group of order m.

We have $G_{N}:=\operatorname{Gal}\left(k\left(\Lambda_{N}\right) / k\right) \cong\left(R_{T} /(N)\right)^{*}$ with the identification $\sigma_{A} \lambda_{N}=\lambda_{N}^{A}$ for $A \in R_{T}$. For any finite extension K / k we will use the symbol $S_{\infty}(K)$ to denote either one prime or the set of all primes in K above \mathfrak{p}_{∞}, the pole divisor of T in k. We understand by a Dirichlet character any group homomorphism $\chi:\left(R_{T} /(N)\right)^{*} \rightarrow \mathbb{C}^{*}$ and we define the conductor \mathfrak{f}_{χ} of χ as the monic polynomial of minimum degree such that χ can be defined modulo $\mathfrak{f}_{\chi}, \chi:\left(R_{T} /\left(\mathfrak{f}_{\chi}\right)\right)^{*} \rightarrow \mathbb{C}^{*}$.

Given any group of characters $X \subseteq \widehat{G_{N}}\left(=\operatorname{Hom}\left(G_{N}, \mathbb{C}^{*}\right)\right)$, the field associated to X is the subfield of $k\left(\Lambda_{N}\right)$ fixed under $\cap_{\chi \in X}$ ker χ. Conversely, for any field $K \subseteq k\left(\Lambda_{N}\right)$, the group of Dirichlet characters associated to K is $\widehat{\operatorname{Gal}(K / k)}$.

For any character χ we consider the canonical decomposition $\chi=\prod_{P \in R_{T}^{+}} \chi_{P}$, where χ_{P} has conductor a power of P. We have $\mathfrak{f}_{\chi}=\prod_{P \in R_{T}^{+}} \mathfrak{f}_{\chi_{P}}$.

If X is a group of Dirichlet characters, we write $X_{P}:=\left\{\chi_{P} \mid \chi \in X\right\}$ for $P \in R_{T}^{+}$. If K is any extension of $k, k \subseteq K \subseteq k\left(\Lambda_{N}\right)$ and $P \in R_{T}^{+}$, then the ramification index of P in K is $e_{P}=\left|X_{P}\right|$.

In $k\left(\Lambda_{N}\right) / k, \mathfrak{p}_{\infty}$ has ramification index $q-1$ and decomposes into $\frac{\left|G_{N}\right|}{q-1}$ different prime divisors of $k\left(\Lambda_{N}\right)$ of degree 1. Furthermore, with the identification $G_{N} \cong$ $\left(R_{T} /(N)\right)^{*}$, the inertia group \mathfrak{I} of \mathfrak{p}_{∞} is $\mathbb{F}_{q}^{*} \subseteq\left(R_{T} /(N)\right)^{*}$, more precisely, $\mathfrak{I}=$ $\left\{\sigma_{a} \mid a \in \mathbb{F}_{q}^{*}\right\}$. In this case the inertia and the decomposition groups coincide. The primes that ramify in $k\left(\Lambda_{N}\right) / k$ are \mathfrak{p}_{∞} and the polynomials $P \in R_{T}^{+}$such that $P \mid N$.

We recall Rosen's definition for a relative Hilbert class field of a congruence function field K.

Definition 2.1 ([14]). Let K be a function field with field of constants \mathbb{F}_{q}. Let S be a nonempty finite set of prime divisors of K. The Hilbert class function field of K relative to $S, K_{H, S}$, is the maximal unramified abelian extension of K where every element of S decomposes fully.

From now on, for any finite extension K of k we will consider S as the set of prime divisors dividing \mathfrak{p}_{∞}, the pole divisor of T in k and we write K_{H} instead of $K_{H, S}$.

Definition 2.2. Let K be a finite geometric extension of k. The genus field $K_{\mathfrak{g e}}$ of K is the maximal extension of K contained in K_{H} that is the composite of K and an abelian extension of k. Equivalently, $K_{\mathfrak{g e}}=K k^{*}$ where k^{*} is the maximal abelian extension of k contained in K_{H}.

When K / k is an abelian extension, $K_{\mathfrak{g e}}$ is the maximal abelian extension of k contained in K_{H}. Our main goal in this section is to find $K_{\mathfrak{g e}}$ when K / k is a cyclic extension of degree l^{n} where $l^{n} \mid q-1$ and K is a subfield of a cyclotomic function field.

Proposition 2.3. If $K \subseteq k\left(\Lambda_{N}\right)$ and the group of characters associated to K is X, then the maximal abelian extension J of K unramified at every finite prime $P \in R_{T}^{+}$, contained in a cyclotomic extension, is the field associated to $Y=\prod_{P \in R_{T}^{+}} X_{P}=$ $\prod_{P \mid N} X_{P}$.
Proof. [12, Proposition 3.3].
In this case \mathfrak{p}_{∞} has no inertia in J / K but it might be ramified.
Proposition 2.4. If E / k is an abelian extension such that \mathfrak{p}_{∞} is tamely ramified, then there exist $N \in R_{T}$ and $m \in \mathbb{N}$ such that $E \subseteq k\left(\Lambda_{N}\right) \mathbb{F}_{q^{m}}$.

Proof. [12, Proposition 3.4].
Theorem 2.5. Assume $K \subseteq k\left(\Lambda_{N}\right)$ for some polynomial N. Let X be the group of Dirichlet characters associated to $K, Y=\prod_{P \mid N} X_{P}, Y_{1}=\{\chi \in Y \mid \chi(a)=$ 1 for all $\left.a \in \mathbb{F}_{q}^{*}\right\}$ and J_{1} the field associated to Y_{1}. Then the genus field of K is $K_{\mathfrak{g e}}=K J_{1}$.

Proof. [12, Theorem 3.6].
Now we consider K / k a cyclic geometric extension of degree l^{n} where l is a prime number and such that $l^{n} \mid q-1$. Therefore K / k is a Kummer extension and then
$K=k(\sqrt[l^{n}]{\gamma D})$ where $\gamma \in \mathbb{F}_{q}^{*}$ and $D \in R_{T}$ is a monic polynomial l^{n}-power free. If $K \subseteq k\left(\Lambda_{N}\right)$ for some $N \in R_{T}$, we have $K=k\left(\sqrt[l^{n}]{(-1)^{\operatorname{deg} D} D}\right)$ ([15]). For the convenience of the reader we present a proof of this fact.

Here we will assume that $q \geq 3$. First we want to know when a field $k(\sqrt[l^{n}]{P})$, where $l^{n} \mid q-1$ and $P \in R_{T}^{+}$, is contained in $k\left(\Lambda_{P}\right)$. The Galois group $\operatorname{Gal}\left(k\left(\Lambda_{P}\right) / k\right) \cong$ $\left(R_{T} /(P)\right)^{*} \cong \mathbb{F}_{q^{d}}^{*}$ is a cyclic group of order $q^{d}-1$, where d is the degree of P. Therefore there exists a unique extension of the form $k(\sqrt[l^{n}]{\alpha P}), \alpha \in \mathbb{F}_{q}^{*}$, contained in $k\left(\Lambda_{P}\right)$. Note that if $\alpha \notin\left(\mathbb{F}_{q}^{*}\right)^{l^{n}}, k(\sqrt[l^{n}]{P}) \neq k(\sqrt[l^{n}]{\alpha P})$ since otherwise $\sqrt[l^{n}]{\alpha} \in k$ and so $\alpha \in\left(\mathbb{F}_{q}^{*}\right)^{l^{n}}$.
Proposition 2.6. For $P \in R_{T}^{+}, k\left(\sqrt[l n]{(-1)^{d} P}\right) \subseteq k\left(\Lambda_{P}\right)$.
Proof. Let $\Phi_{P}(u)=\frac{u^{P}}{u}$ be the P-th cyclotomic polynomial. We have

$$
\Phi_{P}(u)=\prod_{\substack{A \neq 0, A \in R_{T} \\
\operatorname{deg} A<\operatorname{deg} P}}\left(u-\lambda^{A}\right)=\sum_{i=0}^{d}\left[\begin{array}{l}
P \\
i
\end{array}\right] u^{q^{i}-1}
$$

where $\lambda \in \Lambda_{P} \backslash\{0\}$, that is, λ is an R_{T}-generator of Λ_{P}. Then

$$
\Phi_{P}(0)=(-1)^{q^{d}-1} \prod_{\substack{A \neq 0, A \in R_{T} \\ \operatorname{deg} A<\operatorname{deg} P}} \lambda^{A}=P
$$

Now, every polynomial $A \in R_{T}, A \neq 0$ can be uniquely written as a product of an element $\alpha \in \mathbb{F}_{q}^{*}$ and a monic polynomial $A_{1}: A=\alpha A_{1}$. Now, $\lambda^{A}=\lambda^{\alpha A_{1}}=\alpha \lambda^{A}$. Note that there are exactly $q-1$ polynomials $A \in R_{T}, A \neq 0$ such that A_{1} occurs in its factorization as above, one for each of the $q-1$ elements of \mathbb{F}_{q}^{*}. Therefore

$$
\begin{aligned}
P & =(-1)^{q^{d}-1} \prod_{\substack{A \neq 0, A \in R_{T} \\
\operatorname{deg} A<\operatorname{deg} P}} \lambda^{A}=(-1)^{q^{d}-1} \prod_{\substack{A_{1} \text { monic } \\
\alpha \in \mathbb{F}_{q}^{*}}} \alpha \lambda^{A_{1}} \\
& =(-1)^{q^{d}-1}\left(\prod_{\alpha \in \mathbb{F}_{q}^{*}} \alpha\right)^{\frac{q^{d}-1}{q-1}}\left(\prod_{A_{1} \text { monic }} \lambda^{A_{1}}\right)^{q-1}
\end{aligned}
$$

Note that $\prod_{\alpha \in \mathbb{F}_{q}^{*}} \alpha=-1$ and that $\xi:=\prod_{A_{1} \text { monic }} \lambda^{A_{1}} \in k\left(\Lambda_{P}\right)$. Thus

$$
(-1)^{q^{d}-1}(-1)^{\left(q^{d}-1\right) /(q-1)} \xi^{q-1}=(-1)^{d} \xi^{q-1}=P
$$

with $\xi \in k\left(\Lambda_{P}\right)$. It follows that $\xi=\sqrt[q-1]{(-1)^{d} P} \in k\left(\Lambda_{P}\right)$. In particular $\sqrt[l^{n}]{(-1)^{d} P}=$ $\xi^{(q-1) / l^{n}} \in k\left(\Lambda_{P}\right)$.

Corollary 2.7. For any monic polynomial $D \in R_{T}$, we have $k\left(\sqrt[l n]{(-1)^{\operatorname{deg} D} D}\right) \subseteq$ $k\left(\Lambda_{D}\right)$.

Next, we study the behavior of \mathfrak{p}_{∞} in K / k.
Proposition 2.8. Let $K=k(\sqrt[l^{n}]{\gamma D})$ where $\gamma \in \mathbb{F}_{q}^{*}$ and $D \in R_{T}$ is a monic polynomial l^{n}-power free. Then if e_{∞}, f_{∞} and h_{∞} denote the ramification index, the inertia degree and the decomposition index of \mathfrak{p}_{∞} respectively in K / k, then

$$
e_{\infty}=l^{n-t}, \quad f_{\infty}=l^{m}, \quad \text { and } \quad h_{\infty}=l^{t-m}
$$

where $\operatorname{deg} D=l^{t^{\prime}}$ a with $\operatorname{gcd}(a, l)=1, t=\min \left\{n, t^{\prime}\right\}$ and $\mathbb{F}_{q}\left(\sqrt[t^{t}]{(-1)^{\operatorname{deg} D} \gamma}\right)=\mathbb{F}_{q^{l m}}$.

Proof. The computation of the ramification index is due to Hasse (see [16, Theorem 5.8.12]).

By Corollary 2.7 we have that \mathfrak{p}_{∞} decomposes fully in $k\left(\sqrt[t^{t}]{(-1)^{\operatorname{deg} D} D}\right) \subseteq$ $k\left(\Lambda_{D}\right)$, and \mathfrak{p}_{∞} is fully inert in $k \mathbb{F}_{q^{l^{m}}} / k$ since \mathfrak{p}_{∞} is of degree one (see [16, Theorem 6.2.1]). Therefore the inertia degree of \mathfrak{p}_{∞} in $k(\sqrt[t t]{D}) \mathbb{F}_{q^{l m}} / k$ is l^{m}. It follows that $k\left(\sqrt[i^{t}]{(-1)^{\operatorname{deg} D} D}\right)$ is the inertia field of \mathfrak{p}_{∞} in $k(\sqrt[i^{t}]{D}) \mathbb{F}_{q^{m m}} / k$. Therefore \mathfrak{p}_{∞} is fully decomposed in $k(\sqrt[t]{\gamma D}) \mathbb{F}_{q^{l^{m}}} / k(\sqrt[t t]{\gamma D})$:

Therefore $f_{\infty}=l^{m}$. The result follows.

3. The case $n=1$

The case $n=1$ is due to Peng [13]. In [12] we gave another proof of the result of Peng with the techniques developed there. The description for the genus field in [12] is different from that given in [13]. In this section we obtain the same description as in the original paper.

We will use that for any $\alpha \in \mathbb{F}_{q}^{*}$ and $1 \leq e \leq l-1$, we have $k\left(\sqrt[l]{\alpha P^{e}}\right)=k\left(\sqrt[l]{\alpha^{f} P}\right)$ where $f e \equiv 1 \bmod l$. Since we have l classes $\bmod \left(\mathbb{F}_{q}^{*}\right)^{l}$ in \mathbb{F}_{q}^{*}, the l different fields $k(\sqrt[l]{\alpha P}), \alpha \in \mathbb{F}_{q}^{*}$ are given by the classes $\bmod \left(\mathbb{F}_{q}^{*}\right)^{l}$. Therefore $k\left(\sqrt[l]{\alpha^{f} P}\right) \subseteq k\left(\Lambda_{P}\right)$ if and only if $\alpha^{f} \equiv(-1)^{d} \bmod \left(\mathbb{F}_{q}^{*}\right)^{l}$.

Here we have that $K:=k(\sqrt[l]{\gamma D}) \subseteq k\left(\Lambda_{D}\right) \mathbb{F}_{q^{l}}$ with $D \in R_{T}$ a monic $l-$ power free polynomial, $\gamma \in \mathbb{F}_{q}^{*}$ and $D=P_{1}^{e_{1}} \cdots P_{r}^{e_{r}}$ where $P_{i} \in R_{T}^{+}, 1 \leq e_{i} \leq l-1,1 \leq i \leq r$. Furthermore we arrange the product so that $l \mid \operatorname{deg} P_{i}$ for $1 \leq i \leq s$ and $l \nmid \operatorname{deg} P_{j}$ for $s+1 \leq j \leq r, 0 \leq s \leq r$. We have $\mathbb{F}_{q}^{*} \subseteq\left(\mathbb{F}_{q^{l}}^{*}\right)^{l}$. Fix $\varepsilon \in \mathbb{F}_{q^{l}} \backslash \mathbb{F}_{q}$.

First,
Proposition 3.1. The behavior of \mathfrak{p}_{∞} in K / k is the following:
(a).- If $l \nmid \operatorname{deg} D, \mathfrak{p}_{\infty}$ is ramified.
(b).- If $l \mid \operatorname{deg} D$ and $\gamma \in\left(\mathbb{F}_{q}^{*}\right)^{l}, \mathfrak{p}_{\infty}$ decomposes.
(c).- If $l \mid \operatorname{deg} D$ and $\gamma \notin\left(\mathbb{F}_{q}^{*}\right)^{l}, \mathfrak{p}_{\infty}$ is inert.

Proof. This is a particular case of Proposition 2.8.
Now by $\left[12\right.$, Remark 4.3], we have $\left[K_{\mathfrak{g c}}: K\right]=\left[E_{\mathfrak{g c}}: E\right] t$, where

$$
t=\operatorname{deg} S_{\infty}(K)= \begin{cases}1 & \text { if } \mathfrak{p}_{\infty} \text { is not inert in } K / k \\ l & \text { if } \mathfrak{p}_{\infty} \text { is inert in } K / k\end{cases}
$$

and $E:=K \mathbb{F}_{q^{l}} \cap k\left(\Lambda_{D}\right)=k\left(\sqrt[l]{(-1)^{\operatorname{deg} D} D}\right)$.
When $K=E$, that is, when $K \subseteq k\left(\Lambda_{D}\right)$, if χ is the character of order l associated to $K, \chi=\chi_{P_{1}} \cdots \chi_{P_{r}}$, we consider $Y=\left\langle\chi_{P_{i}} \mid 1 \leq i \leq r\right\rangle$. The field associated to Y is $F=k\left(\sqrt[l]{(-1)^{\operatorname{deg} P_{1} P_{1}}}, \ldots, \sqrt[l]{(-1)^{\operatorname{deg} P_{r} P_{r}}}\right)$, and $K_{\mathfrak{g e}}=F$ if $l \nmid \operatorname{deg} D$ or if $l \mid \operatorname{deg} P_{i}$ for all i (that is, $s=r$). This is because in the first case \mathfrak{p}_{∞} is already ramified in K and in the second \mathfrak{p}_{∞} is unramified in F / k.

When $l \mid \operatorname{deg} D$ and $l \nmid \operatorname{deg} P_{r}, \mathfrak{p}_{\infty}$ ramifies in F / k and is unramified in K / k. In this case $\left[F: E_{\mathfrak{g e}}\right]=l$. Let $a_{s+1}, \ldots, a_{r-1} \in \mathbb{Z}$ be such that $l \mid \operatorname{deg}\left(P_{j} P_{r}^{a_{j}}\right)$, that is, $\operatorname{deg} P_{j}+a_{j} \operatorname{deg} P_{r} \equiv 0 \bmod l, s+1 \leq j \leq r-1$. Let

$$
F_{1}:=k\left(\sqrt[l]{P_{1}}, \ldots, \sqrt[l]{P_{s}}, \sqrt[l]{P_{s+1} P_{r}^{a_{s+1}}}, \ldots, \sqrt[l]{P_{r-1} P_{r}^{a_{r-1}}}\right)
$$

Then $S_{\infty}(E)$ decomposes in $F_{1} / E, K \subseteq F_{1} \subseteq E_{\mathfrak{g e}}$ and $\left[F: F_{1}\right]=l$. It follows that $E_{\mathfrak{g e}}=F_{1}$.

We obtain
Proposition 3.2. When $K \subseteq k\left(\Lambda_{D}\right)$, we have $K_{\mathfrak{g e}, l}=E_{\mathfrak{g e}, l}=$
(a).- $k\left(\sqrt[l]{\varepsilon}, \sqrt[l]{P_{1}}, \ldots, \sqrt[l]{P_{r}}\right)$ if $l \nmid \operatorname{deg} D$ or if $l \mid \operatorname{deg} P_{i}$ for all $1 \leq i \leq r$,
(b).- $\quad k\left(\sqrt[l]{\varepsilon}, \sqrt[l]{P_{1}}, \ldots, \sqrt[l]{P_{s}}, \sqrt[l]{P_{s+1} P_{r}^{a_{s+1}}}, \ldots, \sqrt[l]{P_{r-1} P_{r}^{a_{r-1}}}\right)$, where the exponent a_{j} satisfies $\operatorname{deg} P_{j}+a_{j} \operatorname{deg} P_{r} \equiv 0 \bmod l, s+1 \leq j \leq r-1$, if $l \mid \operatorname{deg} D$ and $l \nmid \operatorname{deg} P_{r}$.

Now we consider a general K.
Remark 3.3. In any case, for all $1 \leq i \leq r$ and for every $a \in \mathbb{F}_{q}^{*}$, the extension $k\left(\sqrt[l]{\gamma D}, \sqrt[l]{a P_{i}}\right) / k(\sqrt[l]{\gamma D})$ is unramified at every finite prime. This follows from the fact that $\operatorname{Gal}\left(k\left(\sqrt[l]{\gamma D}, \sqrt[l]{a P_{i}}\right) / k\right) \cong C_{l} \times C_{l}$ and we have tame ramification. Therefore the inertia group of any prime divisor is $\{1\}$ or C_{l}. On the other hand the only finite prime divisors ramified in $\left.k\left(\sqrt[l]{\gamma D}, \sqrt[l]{a P_{i}}\right) / k\right)$ are $P_{i}, 1 \leq i \leq r$ and they are already ramified in $k(\sqrt[l]{\gamma D}) / k$.

Let \mathfrak{D} be the decomposition group of $S_{\infty}(K)$ in $K_{\mathfrak{g e}, l} / K$. Then $K_{\mathfrak{g e}}=K_{\mathfrak{g e}, l}^{\mathfrak{P}}$ ([12, Theorem 4.2]).
Case 1: If $l \nmid \operatorname{deg} D$, then \mathfrak{p}_{∞} ramifies in K / k and $S_{\infty}(K)$ is inert in $K_{\mathfrak{g e}, l} / K$. If $K=E$, the inertia of $S_{\infty}(K)$ occurs in $E_{\mathfrak{g e}, l} / E_{\mathfrak{g e}}$, so that $\mathfrak{D}=\operatorname{Gal}\left(E_{\mathfrak{g e}, l} / E_{\mathfrak{g e}}\right)$ and by Proposition 3.2, $K_{\mathfrak{g e}}=E_{\mathfrak{g c}}=E_{\mathfrak{g e}, l}^{\mathfrak{P}}=k\left(\sqrt[l]{(-1)^{\operatorname{deg} P_{1} P_{1}}}, \ldots, \sqrt[l]{(-1)^{\operatorname{deg} P_{r} P_{r}}}\right)=$ $k\left(\sqrt[l]{\gamma D}, \sqrt[l]{P_{1}}, \ldots, \sqrt[l]{P_{r}}\right)$.

If $K \neq E, K_{\mathfrak{g e}}=K_{\mathfrak{g e}, l}^{\mathfrak{D}}$ and $\left[K_{\mathfrak{g e}, l}: K_{\mathfrak{g e}}\right]=l$. If $l \mid \operatorname{deg} P_{i}, \mathfrak{p}_{\infty}$ decomposes in $k\left(\sqrt[l]{P_{i}} / k\right.$. It follows that \mathfrak{p}_{∞} is not inert. Therefore in this case $k\left(\sqrt[l]{\gamma D}, \sqrt[l]{P_{i}}\right) \subseteq K_{\mathfrak{g e}}$. Thus $k\left(\sqrt[l]{\gamma D}, \sqrt[l]{P_{1}}, \ldots, \sqrt[l]{P_{s}}\right) \subseteq K_{\mathfrak{g c}}$.

For $s+1 \leq j \leq r-1, l \nmid \operatorname{deg} P_{j}$. Then \mathfrak{p}_{∞} ramifies both in $k(\sqrt[l]{\gamma D}) / k$ and in $k\left(\sqrt[l]{\beta_{j} P_{j}}\right) / k$ for $\beta_{j} \in \mathbb{F}_{q}^{*}$. Then \mathfrak{p}_{∞} ramifies in all but one subextension of degree l over k of $k\left(\sqrt[l]{\gamma D}, \sqrt[l]{\beta_{j} P_{j}}\right) / k$. The only subextension where \mathfrak{p}_{∞} is unramified is $k\left(\sqrt[l]{\gamma \beta_{j}^{-c_{j}} D P_{j}^{-c_{j}}}\right)$ with c_{j} such that $\operatorname{deg} D P_{j}^{-c_{j}}=\operatorname{deg} D-c_{j} \operatorname{deg} P_{j} \equiv 0 \bmod l$. In order that \mathfrak{p}_{∞} decompose in this last extension it is necessary that $\gamma \beta_{j}^{-c_{j}} \in\left(\mathbb{F}_{q}^{*}\right)^{l}$. Thus, let $\beta_{j}:=\gamma^{b_{j}}$ be such that $1-c_{j} b_{j} \equiv 0 \bmod l$. That is, $b_{j} \equiv c_{j}^{-1} \bmod l$.

It follows that $F_{1}=k\left(\sqrt[l]{\gamma D}, \sqrt[l]{P_{1}}, \ldots, \sqrt[l]{P_{s}}, \sqrt[l]{\gamma^{b_{s+1} P_{s+1}}}, \ldots, \sqrt[l]{\gamma^{b_{r-1} P_{r-1}}}\right) \subseteq$ $K_{\mathfrak{g c}}$ and $\left[K_{\mathfrak{g e}, l}: F_{1}\right]=l$. We obtain that $K_{\mathfrak{g e}}=F_{1}$.
Case 2 Now we consider the case $l \mid \operatorname{deg} P_{i}$ for all $1 \leq i \leq r$. If $K=E \subseteq k\left(\Lambda_{D}\right)$, $K_{\mathfrak{g c}}=k\left(\sqrt[l]{P_{1}}, \ldots, \sqrt[l]{P_{r}}\right)=k\left(\sqrt[l]{\gamma}, \sqrt[l]{P_{1}}, \ldots, \sqrt[l]{P_{r}}\right)$.

If $K \neq E, K_{\mathfrak{g c}}=K_{\mathfrak{g c}, l}=E_{\mathfrak{g e}, l}=k\left(\sqrt[l]{\varepsilon}, \sqrt[l]{P_{1}}, \ldots, \sqrt[l]{P_{r}}\right)=k\left(\sqrt[l]{\gamma}, \sqrt[l]{P_{1}}, \ldots, \sqrt[l]{P_{r}}\right)$.
Case 3 Let $l \mid \operatorname{deg} D, l \nmid \operatorname{deg} P_{r}$. If $K=E$ then

$$
K_{\mathfrak{g e}}=k\left(\sqrt[l]{P_{1}}, \ldots, \sqrt[l]{P_{s}}, \sqrt[l]{P_{s+1} P_{r}^{a_{s+1}}}, \ldots, \sqrt[l]{P_{r-1} P_{r}^{a_{r-1}}}\right)
$$

with $\operatorname{deg} P_{j}+a_{j} \operatorname{deg} P_{r} \equiv 0 \bmod l, s+1 \leq j \leq r-1$.
If $K \neq E, K_{\mathfrak{g e}, l}=K_{\mathfrak{g e}}=k\left(\sqrt[l]{\varepsilon}, \sqrt[l]{P_{1}}, \ldots, \sqrt[l]{P_{s}}, \sqrt[l]{P_{s+1} P_{r}^{a_{s+1}}}, \ldots, \sqrt[l]{P_{r-1} P_{r}^{a_{r-1}}}\right)=$ $k\left(\sqrt[l]{\gamma}, \sqrt[l]{P_{1}}, \ldots, \sqrt[l]{P_{s}}, \sqrt[l]{P_{s+1} P_{r}^{a_{s+1}}}, \ldots, \sqrt[l]{P_{r-1} P_{r}^{a_{r-1}}}\right)$.

We have obtained the result of Peng:
Theorem 3.4 (G. Peng [13]). Let $D=P_{1}^{e_{1}} \cdots P_{r}^{e_{r}} \in R_{T}$ be a monic l-power free polynomial, where $P_{i} \in R_{T}^{+}, 1 \leq e_{i} \leq l-1,1 \leq i \leq r$. Let $0 \leq s \leq r$ be such that $l \mid \operatorname{deg} P_{i}$ for $1 \leq i \leq s$ and $l \nmid \operatorname{deg} P_{j}$ for $s+1 \leq j \leq r$. Let $K:=k(\sqrt[l]{\gamma D})$ where $\gamma \in \mathbb{F}_{q}^{*}$. Let a_{j}, b_{j}, c_{j} be defined such that: $\operatorname{deg} P_{i}+a_{i} \operatorname{deg} P_{r} \equiv 0 \bmod l$, $\operatorname{deg} D-c_{j} \operatorname{deg} P_{j} \equiv 0 \bmod l$ and $b_{j} \equiv c_{j}^{-1} \bmod l, s+1 \leq j \leq r$. Then $K_{\mathfrak{g e}}$ is given by:
(a).- $k\left(\sqrt[l]{\gamma}, \sqrt[l]{P_{1}}, \ldots, \sqrt[l]{P_{r}}\right)$ if $l \mid \operatorname{deg} P_{r}$.
(b).- $k\left(\sqrt[l]{\gamma}, \sqrt[l]{P_{1}}, \ldots, \sqrt[l]{P_{s}}, \sqrt[l]{P_{s+1} P_{r}^{a_{s+1}}}, \ldots, \sqrt[l]{P_{r-1} P_{r}^{a_{r-1}}}\right)$ when $l \mid \operatorname{deg} D$ and $l \nmid$ $\operatorname{deg} P_{r}$.
(c).- $k\left(\sqrt[l]{\gamma D}, \sqrt[l]{P_{1}}, \ldots, \sqrt[l]{P_{s}}, \sqrt[l]{\gamma^{b_{s+1} P_{s+1}}}, \ldots, \sqrt[l]{\gamma^{b_{r-1} P_{r-1}}}\right)$ if $l \nmid \operatorname{deg} D$.

4. Cyclic extensions of degree l^{n}

First we assume $K=k(\sqrt[l n]{\gamma D}) \subseteq k\left(\Lambda_{N}\right)$ for some $N \in R_{T}$. Let $D=P_{1}^{\alpha_{1}} \cdots P_{r}^{\alpha_{r}}$, $1 \leq \alpha_{i} \leq l^{n}-1,1 \leq i \leq r$, with $P_{1}, \ldots, P_{r} \in R_{T}^{+}$. Let $\alpha_{i}=l^{a_{i}} c_{i}, \operatorname{gcd}\left(l, c_{i}\right)=1$, $1 \leq i \leq r, 0 \leq a_{i} \leq n-1$. Since K / k is geometric, we have that at least one a_{i} must be 0 . Let χ_{D} be the Dirichlet character associated to $E:=k\left(\sqrt[l^{n}]{(-1)^{\operatorname{deg} D} D}\right)$. Then $\chi_{P_{i}}$ is the character associated to $E_{i}=k\left(\sqrt[l^{n-a_{i}}]{(-1)^{\operatorname{deg} P_{i} P_{i}}}\right)$ since

$$
\sqrt[l^{n}]{(-1)^{\operatorname{deg} P_{i}^{\alpha_{i}}} P_{i}^{\alpha_{i}}}=\sqrt[l n]{(-1)^{l^{a_{i}} c_{i} \operatorname{deg} P_{i}} P_{i}^{l^{a_{i}} c_{i}}}=\sqrt[l n-a_{i}]{(-1)^{\operatorname{deg} P_{i}^{c_{i}} P_{i}^{c_{i}}}}
$$

and

$$
k\left(\sqrt[l^{n-a_{i}}]{(-1)^{\operatorname{deg} P_{i}^{c_{i}}} P_{i}^{c_{i}}}\right)=k\left(\sqrt[l^{n-a_{i}}]{(-1)^{\operatorname{deg} P_{i}} P_{i}}\right)
$$

Therefore $M:=E_{1} \cdots E_{r}$ is the maximal abelian extension of E unramified at every finite prime.

Now the ramification index of \mathfrak{p}_{∞} in E / k is l^{n-t} where $\operatorname{deg} D=l^{t^{\prime}} s, \operatorname{gcd}(l, s)=1$ and $t=\min \left\{n, t^{\prime}\right\}$. Let $\operatorname{deg} P_{i}=l^{b_{i}^{\prime}} d_{i}, \operatorname{gcd}\left(d_{i}, l\right)=1$ and let $b_{i}:=\min \left\{n-a_{i}, b_{i}^{\prime}\right\}$. Then \mathfrak{p}_{∞} has ramification index $l^{n-a_{i}-b_{i}}$ in E_{i} / k. We have

$$
\begin{equation*}
l^{t^{\prime}} s=\operatorname{deg} D=\sum_{i=1}^{r} \alpha_{i} \operatorname{deg} P_{i}=\sum_{i=1}^{r} l^{a_{i}} c_{i} b^{b_{i}^{\prime}} d_{i}=\sum_{i=1}^{r} l^{a_{i}+b_{i}^{\prime}}\left(c_{i} d_{i}\right) \tag{4.1}
\end{equation*}
$$

and $\alpha_{i} \operatorname{deg} P_{i}=l^{a_{i}+b_{i}^{\prime}} c_{i} d_{i} \leq \operatorname{deg} D=l^{t^{\prime}} s$.
From Abhyankar Lemma ([16, Theorem 12.4.4]), we have that the ramification index of \mathfrak{p}_{∞} in M / k is $\operatorname{lcm}\left[l^{n-a_{1}-b_{1}}, \cdots, l^{n-a_{r}-b_{r}}\right]=l^{n-a_{0}-b_{0}}$ where $a_{0}+b_{0}=$ $\min \left\{a_{i}+b_{i} \mid 1 \leq i \leq r\right\}$. We may order the product $P_{1}^{\alpha_{1}} \cdots P_{r}^{\alpha_{r}}$ so that $a_{1}+b_{1} \leq$ $a_{2}+b_{2} \leq \cdots \leq a_{r}+b_{r}$ and therefore we may assume $a_{0}+b_{0}=a_{1}+b_{1}$. Since $E \subseteq M$, we have that $l^{n-t} \leq l^{n-a_{i}-b_{i}}$ for some i, that is, $a_{1}+b_{1} \leq t$.

We have

$$
M=k\left(\sqrt[l^{n-a_{1}}]{(-1)^{\operatorname{deg} P_{1}} P_{1}}, \sqrt[l^{n-a_{2}}]{(-1)^{\operatorname{deg} P_{2} P_{2}}}, \ldots, \sqrt[l^{n-a_{r}}]{\left.(-1)^{\operatorname{deg} P_{r} P_{r}}\right)}\right.
$$

and the ramification index of $S_{\infty}(E)$ in M / E is $\frac{l^{n-a_{1}-b_{1}}}{l^{n-t}}=l^{t-a_{1}-b_{1}}$. Let $E_{\mathfrak{g c}}$ be the genus field of E. Then $E \subseteq E_{\mathfrak{g e}} \subseteq M$ and $\left[M: E_{\mathfrak{g e}}\right]=l^{t-a_{1}-b_{1}}=\left|D\left(S_{\infty}(E)\right)\right|$
where $D\left(S_{\infty}(E)\right)$ denotes the decomposition group of $S_{\infty}(E)$ in $M / E_{\mathfrak{g e}}$. Now $E_{i}=k\left(\sqrt[l^{n-a_{i}}]{(-1)^{\operatorname{deg} P_{i}} P_{i}}\right)=k\left(\sqrt[l^{n}]{(-1)^{\operatorname{deg} P_{i}^{a_{i}}} P_{i}^{a_{i}}}\right), 1 \leq i \leq r$.

We have $a_{1}+b_{1} \leq t$. If $a_{1}+b_{1}=t$, then $M=E_{\mathfrak{g c}}$.
Note that if $a_{i}+b_{i}<t$, then $b_{i}<t-a_{i} \leq n-a_{i}$. Hence $b_{i}^{\prime}=b_{i}$ in this case.
If $a_{1}+b_{1}<t \leq t^{\prime}$, from (4.1) we obtain

$$
l^{t^{\prime}} s=l^{a_{1}+b_{1}}\left(\sum_{i=1}^{r} l^{a_{i}+b_{i}^{\prime}-a_{1}-b_{1}} c_{i} d_{i}\right)
$$

Hence, $a_{1}+b_{1}=a_{2}+b_{2}$. That is, the minimum value of $\left\{a_{i}+b_{i} \mid 1 \leq i \leq r\right\}$ is achieved at least twice.

Let u be such that $a_{u}+b_{u}<t \leq a_{u+1}+b_{u+1}$. We assume $u \geq 2$.
We define E_{i}^{\prime} as follows. If $l^{n-a_{i}-b_{i}} \leq l^{n-t}$, equivalently if $t \leq a_{i}+b_{i}$, then $E_{i}^{\prime}=E_{i}$ since the ramification index of \mathfrak{p}_{∞} in E_{i} / k is less than or equal to l^{n-t}. In other words, $E_{i}^{\prime}=E_{i}$, for $u+1 \leq i \leq r$.

For $2 \leq i \leq u$, we define E_{i}^{\prime} as follows. We consider the special case $b_{1}=\min \left\{b_{i} \mid\right.$ $1 \leq i \leq u\}$. Let

$$
\begin{equation*}
E_{i}^{\prime}=k\left(\sqrt[l^{n-a_{i}}]{(-1)^{\operatorname{deg} P_{i} P_{1}^{x_{i}}} P_{i} P_{1}^{x_{i}}}\right) \tag{4.2}
\end{equation*}
$$

be such that

$$
\operatorname{deg}\left(P_{i} P_{1}^{x_{i}}\right)=\operatorname{deg} P_{i}+x_{i} \operatorname{deg} P_{1}=l^{b_{1}+m_{i}} y_{i}
$$

where $n-a_{i}-\left(b_{1}+m_{i}\right)=n-t$ and $\operatorname{gcd}\left(y_{i}, l\right)=1$. That is we choose x_{i} such that the ramification index of \mathfrak{p}_{∞} in E_{i}^{\prime} / k is l^{n-t}. We will see that this is always possible. Recall that $b_{i}=b_{i}^{\prime}$ in this case.

Remark 4.1. We will use the following elementary fact. Let l be a prime number, $m \in \mathbb{N}$ and let $d_{1}, d_{i} \in \mathbb{N}$ be relatively prime to $l: \operatorname{gcd}\left(d_{1}, l\right)=\operatorname{gcd}\left(d_{i}, l\right)=1$. Then there exist $y_{i}, z_{i} \in \mathbb{N}$ such that $\operatorname{gcd}\left(y_{i}, l\right)=1$ and $y_{i} l^{m}-z_{i} d_{1}=d_{i}$.

We have

$$
\left(P_{i} P_{1}^{x_{i}}\right)=\operatorname{deg} P_{i}+x_{i} \operatorname{deg} P_{1}=l^{b_{i}} d_{i}+x_{i} l^{b_{1}} d_{1}=l^{b_{1}}\left(l^{b_{i}-b_{1}} d_{i}+x_{i} d_{1}\right)
$$

Therefore we need x_{i} such that

$$
l^{b_{i}-b_{1}} d_{i}+x_{i} d_{1}=l^{m_{i}} y_{i}
$$

with $n-a_{i}-\left(b_{1}+m_{i}\right)=n-t$, equivalently, $m_{i}=t-a_{i}-b_{1}$, and $\operatorname{gcd}\left(y_{i}, l\right)=1$. Note that $m_{i}=t-a_{i}-b_{1}=t-a_{i}-b_{i}+\left(b_{i}-b_{1}\right) \geq t-a_{i}-b_{i}>0$.

Let $x_{i}:=l^{b_{i}-b_{1}} z_{i}$ for some z_{i}, that is,

$$
l^{b_{i}-b_{1}} d_{i}+l^{b_{i}-b_{1}} z_{i} d_{1}=l^{m_{i}} y_{i}
$$

Therefore, we need $z_{i}, y_{i} \in \mathbb{Z}$ such that $\operatorname{gcd}\left(y_{i}, l\right)=1$ and

$$
\begin{equation*}
d_{i}+z_{i} d_{1}=l^{m_{i}-b_{i}+b_{1}} y_{i} \tag{4.3}
\end{equation*}
$$

Since $m_{i}-b_{i}+b_{1}=\left(t-a_{i}-b_{1}\right)-b_{i}+b_{1}=t-a_{i}-b_{i}>0$, and $\operatorname{gcd}\left(d_{i}, l\right)=1$, it follows, by Remark 4.1, that there exist $z_{i}, y_{i} \in \mathbb{N}$ with $\operatorname{gcd}\left(y_{i}, l\right)=1$ satisfying (4.3). Note that $\operatorname{gcd}\left(z_{i}, l\right)=1$.

In short, let $x_{i}=l^{b_{i}-b_{1}} z_{i} \in \mathbb{N}$ be such that $E_{i}^{\prime}=k\left(\sqrt[l^{n-a_{i}}]{(-1)^{\operatorname{deg} P_{i} P_{1}^{x_{i}}} P_{i} P_{1}^{x_{i}}}\right)$ and the ramification index of \mathfrak{p}_{∞} in E_{i}^{\prime} / k is l^{n-t}.

Finally let $E_{1}^{\prime}=k\left(\sqrt[l^{n-a_{1}}]{(-1)^{\operatorname{deg} P_{1}^{w}} P_{1}^{w}}\right)$ where we choose $w \in \mathbb{N} \cup\{0\}$ such that $E \subseteq M_{1}:=E_{1}^{\prime} E_{2}^{\prime} \cdots E_{u}^{\prime} E_{u+1} \cdots E_{r}=E_{\mathfrak{g c}}$. We will prove that this is possible. Let

$$
\xi_{i}:= \begin{cases} \pm P_{1}^{w} & \text { if } i=1 \\ \pm P_{i} P_{1}^{x_{i}} & \text { if } 2 \leq i \leq u \\ \pm P_{i} & \text { if } u+1 \leq i \leq r\end{cases}
$$

where the sign \pm is chosen to be $(-1)^{\operatorname{deg} Q}$, where $Q=P_{1}, P_{i} P_{1}^{x_{i}}$ or P_{i} respectively.
We have

$$
\begin{align*}
\prod_{i=1}^{r}\left(\xi_{i}^{l^{a_{i}}}\right)^{c_{i}} & = \pm\left[\prod_{i=2}^{r} P_{i}^{l^{a_{i}} c_{i}} \cdot \prod_{i=2}^{u} P_{1}^{l^{a_{i}} c_{i} x_{i}}\right] P_{1}^{l^{a_{1}} c_{1} w} \\
& = \pm \prod_{i=2}^{r} P_{i}^{\alpha_{i}} \cdot P_{1}^{w^{\prime}}= \pm \frac{D}{P_{1}^{\alpha_{1}}} P_{1}^{w^{\prime}}= \pm D P_{1}^{w^{\prime}-\alpha_{1}} \tag{4.4}
\end{align*}
$$

where

$$
\begin{equation*}
w^{\prime}=\sum_{i=2}^{u} l^{a_{i}} c_{i} x_{i}+l^{a_{1}} c_{1} w \tag{4.5}
\end{equation*}
$$

We want w^{\prime} to be chosen so that $\prod_{i=1}^{r}\left(\xi_{i}^{l^{a_{i}}}\right)^{c_{i}} \in M_{1}^{l^{n}}$.
Using (4.1), (4.3), that $b_{1} \leq b_{i}$ and $b_{i}=b_{i}^{\prime}$ for $1 \leq i \leq u$, and that $t \leq t^{\prime}$, we obtain

$$
\begin{equation*}
w^{\prime}=l^{a_{1}} c_{1}(w+1)+l^{t-b_{1}} d_{1}^{-1}\left(\sum_{i=2}^{u} c_{i} y_{i}-l^{t^{\prime}-t} s+\sum_{i=u+1}^{r} l^{a_{i}+b_{i}^{\prime}-t} c_{i} d_{i}\right) \tag{4.6}
\end{equation*}
$$

From (4.4) we have that $E \subseteq M_{1}$ if $w^{\prime} \equiv \alpha_{1} \bmod l^{n}$. From (4.6) we have that $w^{\prime} \equiv \alpha_{1} \bmod l^{n}$ iff there exists $\kappa \in \mathbb{Z}$ such that

$$
\begin{equation*}
\kappa l^{n-a_{1}}-c_{1} w=d_{1}^{-1} l^{t-a_{1}-b_{1}}\left(\sum_{i=2}^{u} c_{i} y_{i}-l^{t^{\prime}-t} s+\sum_{i=u+1}^{r} l^{a_{i}+b_{i}^{\prime}-t} c_{i} d_{i}\right) . \tag{4.7}
\end{equation*}
$$

Since $\operatorname{gcd}\left(c_{1}, l\right)=1, n-a_{1}>0$ and $d_{1} \mid \sum_{i=2}^{u} c_{i} y_{i}-l^{t^{\prime}-t} s+\sum_{i=u+1}^{r} l^{a_{i}+b_{i}^{\prime}-t} c_{i} d_{i}$, it follows that (4.7) can be solved for $\kappa, w \in \mathbb{N}$. Observe that $l^{t-a_{1}-b_{1}} \mid w$, that is, $w=l^{t-a_{1}-b_{1}} \rho$ for some $\rho \in \mathbb{N}$. With this w we obtain $E \subseteq E_{1}^{\prime} \cdots E_{u}^{\prime} E_{u+1} \cdots E_{r}=$ M_{1}.

We have $\operatorname{deg} P_{1}^{w}=w \operatorname{deg} P_{1}=l^{t-a_{1}-b_{1}} \rho l^{b_{1}} d_{1}=l^{t-a_{1}} \rho d_{1}$. It follows that the ramification index of \mathfrak{p}_{∞} in E_{1}^{\prime} is $\leq l^{n-a_{1}-\left(t-a_{1}\right)}=l^{n-t}$. Therefore $M_{1} \subseteq E_{\mathfrak{g} e}$.

To show that $M_{1}=E_{\mathfrak{g} e}$, we let $\mu_{i}:=\sqrt[l^{n-a_{i}}]{(-1)^{\operatorname{deg} P_{i}} P_{i}}, 1 \leq i \leq r$. We have $M=k\left(\mu_{1}, \ldots, \mu_{r}\right)$. Now

$$
\begin{aligned}
\sqrt[l^{n-a_{i}}]{(-1)^{\operatorname{deg} P_{1}^{x_{i}}} P_{1}^{x_{i}}} & =\sqrt[i^{n-a_{i}}]{(-1)^{\operatorname{deg} P_{1}^{x_{i}}} P_{1}^{b_{i}^{b_{i}-b_{1} z_{i}}}} \\
& =\sqrt[i^{n-a_{1}}]{(-1)^{\operatorname{deg} P_{1}^{l_{i}-b_{1}+a_{i}-a_{1} z_{i}}} P_{1}^{l_{i}-b_{1}+a_{i}-a_{1} z_{i}}}
\end{aligned}
$$

that is

$$
\sqrt[\iota^{n-a_{i}}]{(-1)^{\operatorname{deg} P_{1}^{x_{i}}} P_{1}^{x_{i}}}=\mu_{1}^{l^{\left(a_{i}+b_{i}\right)-\left(a_{1}+b_{1}\right)} z_{i}}
$$

for $2 \leq i \leq u$.

Therefore, since $w=l^{t-\left(a_{1}+b_{1}\right)} \rho$,

$$
\begin{equation*}
M_{1}=k\left(\mu_{1}^{l^{t-\left(a_{1}+b_{1}\right)} \rho}, \mu_{2} \mu_{1}^{l^{\left(a_{i}+b_{i}\right)-\left(a_{1}+b_{1}\right)} z_{2}}, \cdots, \mu_{u} \mu_{1}^{l^{\left(a_{u}+b_{u}\right)-\left(a_{1}+b_{1}\right)} z_{u}}, \mu_{u+1} \cdots, \mu_{r}\right) \tag{4.8}
\end{equation*}
$$

Finally, $M=M_{1}\left[\mu_{1}\right]$ and since $\left(a_{i}+b_{i}\right)-\left(a_{1}+b_{1}\right)<t-\left(a_{1}+b_{1}\right)$, it follows that $\mu_{1}^{l^{t-\left(a_{1}+b_{1}\right)}} \in M_{1}$. In particular $\left[M: M_{1}\right] \leq l^{t-\left(a_{1}+b_{1}\right)}=\left[M: E_{\mathfrak{g e}}\right]$. Since $M_{1} \subseteq E_{\mathfrak{g e}}$ we obtain $M_{1}=E_{\mathfrak{g e}}$.

In the general case $K=k(\sqrt[I^{n}]{\gamma D})$, we use the following result proved in [12, Theorem 4.2]. We present the proof for the convenience of the reader.

Theorem 4.2. Let K / k be any abelian finite geometric tamely ramified extension. Then $K \subseteq k\left(\Lambda_{N}\right) \mathbb{F}_{q^{m}}$ for some $N \in R_{T}$ and $m \in \mathbb{N}$. Let $E=k\left(\Lambda_{N}\right) \cap K \mathbb{F}_{q^{m}}$. Then $K_{\mathfrak{g e}}=E_{\mathfrak{g e}} K$.

Proof. We have $E \cap K=E_{\mathfrak{g e}} \cap K=k\left(\Lambda_{N}\right) \cap K$. Therefore $E_{m} \subseteq K_{m}$ and since $\left[K_{m}: k\right]=[E-m: k]$ it follows that $E_{m}=K_{m}$.

Since $K \mathbb{F}_{q^{m}} / K$ and $E_{\mathfrak{g e}} / E$ are unramified, we obtain that $E_{\mathfrak{g c}} K / K$ is unramified. Also, because $S_{\infty}(E)$ decomposes fully in $E_{\mathfrak{g c}}, S_{\infty}(E K)$ decomposes fully in $E_{\mathfrak{g e}} K$. Now, $S_{\infty}(E \cap K)$ has inertia degree one in $E / E \cap K$ so $S_{\infty}(K)$ has inertia degree one in $E K / K$. Therefore $E_{\mathfrak{g c}} K \subseteq K_{\mathfrak{g e}}$. Finally, if $C:=K_{\mathfrak{g e}, m} \cap k\left(\Lambda_{N}\right)$, on the one hand $E_{\mathfrak{g e}} \subseteq C$ and on the other hand C / E is unramified since $K_{\mathfrak{g e}} / E K$ is unramified; also $S_{\infty}(E)$ decomposes fully in C / E. It follows that $C=E_{\mathfrak{g e}}$. By the Galois correspondence, we have $K_{\mathfrak{g e}, m}=E_{\mathfrak{g e}, m}$. Now $K_{\mathfrak{g e}, m} / E_{\mathfrak{g c}, m} K$ is an extension of constants and the field of constants $K_{\mathfrak{g e}, m}$ is $\mathbb{F}_{q^{t}}$ where t is the degree of any infinite prime in K. It can be proved that $\mathbb{F}_{q^{t}} \subseteq E_{\mathfrak{g e}, m} K$. The result follows.

In our case, $E=k\left(\sqrt[l^{n}]{(-1)^{\operatorname{deg} D} D}\right)$. Therefore we obtain our main result.

Theorem 4.3. Let $D \in R_{T}$ be a monic l-power free polynomial and let $\gamma \in \mathbb{F}_{q}^{*}$. Let $K=k(\sqrt[l^{n}]{\gamma D})$. Let $D=P_{1}^{\alpha_{1}} \cdots P_{r}^{\alpha_{r}}$ where $\alpha_{i}=l^{a_{i}} c_{i}, 0 \leq a_{i} \leq n-1$, $\operatorname{gcd}\left(c_{i}, l\right)=1,1 \leq i \leq r$. Let $\operatorname{deg} D=l^{t^{\prime}} s, \operatorname{gcd}(s, l)=1$ and let $\operatorname{deg} P_{i}=l^{b_{i}^{\prime}} d_{i}$, $\operatorname{gcd}\left(d_{i}, l\right)=1$. Let $t=\min \left\{n, t^{\prime}\right\}, b_{i}=\min \left\{b_{i}^{\prime}, n-a_{i}\right\}$. We order the product so that $a_{1}+b_{1} \leq a_{2}+b_{2} \leq \ldots \leq a_{u}+b_{u}<t \leq a_{u+1}+b_{u+1} \leq \cdots \leq a_{r}+b_{r}$. We also assume that $b_{1}=\min \left\{b_{i} \mid 1 \leq i \leq u\right\}$. There exist $x_{i}=l^{b_{i}-b_{1}} z_{i}$, where $z_{i} \in \mathbb{N}$, $\operatorname{gcd}\left(z_{i}, l\right)=1,2 \leq i \leq u$ and $y_{i} \in \mathbb{N}$, where $\operatorname{gcd}\left(y_{i}, l\right)=1,2 \leq i \leq u$ such that

$$
d_{i}+z_{i} d_{1}=l^{t-a_{i}-b_{i}} y_{i}
$$

and there exists $w=l^{t-a_{1}-b_{1}} \rho$ with $\rho \in \mathbb{N}$ such that

$$
\kappa l^{n-a_{1}}-c_{1} w=d_{1}^{-1} l^{t-a_{1}-b_{1}}\left(\sum_{i=2}^{u} c_{i} y_{i}-l^{t^{\prime}-t} s+\sum_{i=u+1}^{r} l^{a_{i}+b_{i}^{\prime}-t} c_{i} d_{i}\right)
$$

for some $\kappa \in \mathbb{Z}$. Then $K_{\mathfrak{g e}}$ is given by

$$
\begin{aligned}
& K_{\mathfrak{g e}}=k\left(\sqrt[l^{n}]{\gamma D}, \sqrt[i^{n-a_{1}}]{(-1)^{\operatorname{deg} P_{1}^{w}} P_{1}^{w}}, \sqrt[l^{n-a_{2}}]{(-1)^{\operatorname{deg} P_{2} P_{1}^{x_{2}} P_{2} P_{1}^{x_{2}}}, \ldots}\right. \\
& \sqrt[i^{n-a_{u}}]{(-1)^{\operatorname{deg} P_{u} P_{1}^{x_{u}}} P_{u} P_{1}^{x_{u}}}, \sqrt[l^{n-a_{u+1}}]{(-1)^{\operatorname{deg} P_{u+1} P_{u+1}}, \ldots} \\
& \quad \sqrt[i^{n-a_{r}}]{\left.(-1)^{\operatorname{deg} P_{r} P_{r}}\right)}
\end{aligned}
$$

Acknowledgment. The authors thank the referee for his (her) suggestions, which improved the exposition.

References

[1] Anglès, Bruno; Jaulent, Jean-François, Théorie des genres des corps globaux, Manuscripta Math. 101, no. 4, 513-532, (2000).
[2] Bae, Sunghan; Hu, Su; Jung, Hwanyup, The generalized Rédei-matrix for function fields, Finite Fields Appl. 18, 760-780, (2012)
[3] Bae, Sunghan; Koo, Ja Kyung, Genus theory for function fields, J. Austral. Math. Soc. Ser. A 60, no. 3, 301-310, (1996).
[4] Clement, Rosario, The genus field of an algebraic function field, J. Number Theory 40, no. 3, 359-375, (1992).
[5] Conner, P.E.; Hurrelbrink, J., Class number parity, Series in Pure Mathematics 8, Singapore etc.: World Scientific,1988.
[6] Fröhlich, Albrecht, Central extensions, Galois groups and ideal class groups of number fields, Contemporary Mathematics, 24, American Mathematical Society, Providence, RI, 1983.
[7] Gauss, Carl Friedrich, Disquisitiones arithmeticae, 1801.
[8] Hu, Su; Li, Yan, The genus fields of Artin-Schreier extensions, Finite Fields Appl. 16, no. 4, 255-264, (2010).
[9] Ishida, Makoto, The genus fields of algebraic number fields, Lecture Notes in Mathematics, Vol. 555, Springer-Verlag, Berlin-New York, 1976.
[10] Leopoldt, Heinrich W., Zur Geschlechtertheorie in abelschen Zahlkörpern, Math. Nachr. 9, 351-362, (1953).
[11] Li, Yan; Hu, Su, Capitulation problem for global function fields, Arch. Math. 97, 413-421, (2011).
[12] Maldonado-Ramírez, Myriam; Rzedowski-Calderón, Martha; Villa-Salvador, Gabriel, Genus Fields of Abelian Extensions of Congruence Rational Function Fields, arXiv:1206.4946v1. To appear in Finite Fields Appl.
[13] Peng, Guohua, The genus fields of Kummer function fields, J. Number Theory 98 , no. 2, 221-227, (2003).
[14] Rosen, Michael, The Hilbert class field in function fields, Exposition. Math. 5, no. 4, 365-378, (1987).
[15] Rosen, Michael, Number theory in function fields, Graduate Texts in Mathematics, 210, Springer-Verlag, New York, 2002.
[16] Villa Salvador, Gabriel Daniel, Topics in the theory of algebraic function fields, Mathematics: Theory \& Applications, Birkhäuser Boston, Inc., Boston, MA, 2006.
[17] Wittmann, Christian, l-class groups of cyclic function fields of degree l, Finite Fields Appl. 13, no. 2, 327-347, (2007).

Facultad de Matemáticas, Universidad Autónoma de Yucatán
E-mail address: vbautista@uady.mx
Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del I.P.N.

E-mail address: mrzedowski@ctrl.cinvestav.mx
Departamento de Control Automático, Centro de Investigación y de Estudios Avanzados del I.P.N.

E-mail address: gvillasalvador@gmail.com

[^0]: Date: January 28th., 2013.
 2000 Mathematics Subject Classification. Primary 11R60; Secondary 11R29, 11R58.
 Key words and phrases. Genus fields, congruence function fields, global fields, Dirichlet characters, cyclotomic function fields, cyclic extensions, Kummer extensions.

