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Abstract 

In this work, we present an alternative algorithm for the state estimation of discrete-time nonlinear 
systems, which we have called Fixed-Point state observer with Steffensen-Aitken accelerated conver- 
gence. This algorithm decomposes the state estimation task into a set of consecutive fixed point iteration 
problems. In other words, it considers a system of nonlinear equations for each time instant and uses a 
fixed point iteration method to solve it, such that the solution given by the method is actually a state 
estimation of the discrete-time nonlinear system at the current time instant. To increase the convergence 
speed of the fixed point iteration method, we propose to incorporate the �2 -Aitken method. Nonetheless, 
later we show that is possible to increase even more this speed by means of the Steffensen’s method. 
The main advantage of our algorithm is the lack of complex calculations, such as the Jacobian matrix 
and its inverse, which are necessary for similar algorithms such as the Newton observer. Therefore, our 
proposal has a low computational cost, is free of singularities, and is easy to implement. Furthermore, 
unlike conventional estimators like the Luenberger observer and the Sliding Mode observer, it does not 
require to calculate gains. To prove the effectiveness of the Fixed-Point state observer, we estimate 
the unknown states of a modified Chua chaotic attractor and compare the numerical results with those 
obtained by Luenberger, Sliding Mode, and Newton observers. 
© 2023 The Franklin Institute. Published by Elsevier Inc. All rights reserved. 
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. Introduction 

In the real world applications, the state variables of any industrial process or system are
rucial for the design of a controller. However, these variables might be totally or partially
nknown due to economic restrictions or technological limitations. Therefore, the design of
athematical algorithms that allow estimating these variables from the available measurements

s extremely important. Such algorithms are known as state estimators or observers. 
In the literature, we can find a great number of estimators applied to all kinds of discrete-

ime dynamic systems. The usual ones are the Luenberger-type observers [1,2] and the sliding
ode observers [3,4] , very useful for fault detection. Some less common but really interesting

pproaches are the interval observers, especially useful for systems with bounded disturbances
5–7] , and graph theory-based observers, widely used in multi-agent problems [8,9] . 

All the observers mentioned above consist of a copy of the dynamic system with additional
orrective terms. However, Grizzle and Moraal presented an alternative idea in their conference
aper [10] . These authors suggested tackling the state estimation problem for discrete-time
onlinear systems by solving a set of consecutive systems of nonlinear equations. That is,
hey consider the estimation problem as a set of nonlinear inversion problems (one problem
or each time instant) and propose to find the solution through an iteration method [11] .
n particular, they use the Newton’s iteration method and named this algorithm as Newton
bserver. The idea is to iterate long enough and then propagate the solution to obtain the
tate estimate at the current time instant. Subsequently, this solution is considered as initial
uess for the iteration method of the following time instant [10,12] . 

The Newton observer is a structurally robust algorithm that has been successfully applied
o several dynamic systems: water flow in industrial tanks [13] , the magnetic flux in magnetic
earings [14] , the glucose level in intensive care unit patients [15] , robot’s kinematic model
16,17] , etc. However, this observer has two implementation problems: 1) If the initial guess
s not close enough to the solution, the iteration method does not converge, and 2) it is
ecessary to evaluate a Jacobian matrix and compute its inverse at each iteration and for
very time instant. More over, the Jacobian matrix could be ill-conditioned and, in general, is
omputationally expensive. For these reasons, the Newton observer can have numerical errors
nd its computational cost might be elevated [18–20] . 

To overcome this issues, one can ensure the convergence of the iteration method by finding
n acceptable initial guess through mathematical analysis. On the other hand, to reduce the
omputational effort, several strategies exist, e.g.: in [19] , the authors proposed to use the
ecant approximation method along with a continuous-time filter scheme. In [15] , Pontryagin’s
aximum principle was applied to calculate the Jacobian matrix by considering a performance

ndicator. Meanwhile, the finite difference approximation and the Broyden-Fletcher-Goldfarb-
hanno algorithm were used to design a free Jacobian observer in [20] . Although these
trategies can reduce the computational effort, a great amount of additional parameters needs
o be identified. 

In this context, we propose an alternative algorithm for the state estimation of discrete-time
onlinear systems that seeks to overcome the second implementation problem that we men-
ioned before, i.e., to avoid the computation of derivatives and inverse maps. We have called
his algorithms as Fixed-Point state observer with Steffensen-Aitken accelerated convergence.
hus, our proposal presents a series of advantages and contributions that are listed below: 
6758 
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(1) To increase the convergence speed of the fixed point iteration method used by the
estimator, we propose to implement a) the �2 -Aitken method and b) the Steffensen’s
method. 

(2) The Fixed-Point observer does not require complex calculations, such as the Jacobian
matrix and its inverse, used in similar algorithms such as the Newton observer [18–20] ,
this traduces in a lower computational cost. 

(3) The implementation of the Steffensen’s method increases considerably the convergence
speed of the fixed point iteration method used by the observer and at the same time, it
still exhibits a lower computational cost than the Newton observer. 

(4) Unlike conventional observers, our proposal does not require the computation of gains
or a set of several other parameters. 

(5) The corresponding mathematical formulation and analysis to ensure convergence are
presented. As far as we know, these have not been previously reported in the literature.

(6) The Fixed-Point observer has a low computational cost, and since does not involve a
Jacobian matrix, can be easily apply to systems whose derivatives computation is to
complex. 

The remainder of this work is organized as follows: Section 2 contains the necessary
heoretical framework for the problem statement and the design of the observer. In Section 3 ,
e introduce the Fixed-Point observer and the proposed convergence schemes. Subsequently,

he modified Chua chaotic attractor is considered in Section 4 to exemplify the effectiveness of
he proposed algorithm. Furthermore, the numerical results are compared with the performance
f Newton, Luenberger, and sliding mode observers. Finally, the conclusions of this work are
iven in Section 5 . 

. Preliminaries 

Whenever one works with real-world applications, the available measurements are discrete-
ime signals. In these cases, the best option to design a state observer is using an exact
iscrete-time model of the system. However, most of the time, only a continuous-time model is
vailable. Since discrete-time models are commonly unknown or hard to obtain, it is advisable
o use a discretization method, such as in [18,21,22] . Depending on the discretization approach
hat is used, the simulation results will correspond better or not with the behaviour of the
riginal continuous system. The most common approach is the well known Euler method,
ue to its simplicity, although recent advances have shown that there exist better alternatives.
onetheless, this discussion is beyond the scope of this work, and the reader is advised to

ook for [23] , where further details about this topic can be found. 
Once a discrete-time model is available, we can find a finite sequence of the output signal

s follows. 

.1. Output signal’s finite sequence of a continuous-time system 

Consider the following continuous-time nonlinear dynamic system 

˙ x = F (x) , 

y = h(x) (1)
6759 
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here x ∈ R 

n , y ∈ R 

p , h is an analytic function and F is a Lipschitz function. For the sake of
implicity, we assume that p = 1 , henceforth. Besides, suppose a sampling time T > 0 and
et f (t, x 0 ) be solution of (1) with the initial condition x 0 . Then, the T -sampled system of
1) is given by 

x k+1 = f (T , x k ) , 

y k = h(x k ) (2)

here x k = ( x 1 ,k , x 2,k , . . . , x n,k ) 
T is the discrete-time state vector at the time instant k and y k

s the corresponding system’s output. 
On the other hand, let δ be a delay operator such that δϕ k = ϕ k−1 , and δ−1 be the cor-

esponding advance operator. Therefore δ−μϕ k = ϕ k+ μ and similarly δμϕ k = ϕ k−μ for any
> 0. Let ˆ δμϕ k define the collection 

ˆ δμϕ k = { δϕ k , . . . , δ
μϕ k } . Meanwhile, ˆ δ−μϕ k stands for

he collection 

ˆ δ−μϕ k = { ϕ k , δ
−1 ϕ k , . . . , δ

−μϕ k } . Evidently, δ0 = 

ˆ δ0 = 1 and 

ˆ δ1 = δ. 
One can note that system (2) is equivalent to x k = δ f (x k ) = f (δx k ) = f (x k−1 ) and δx k+1 =

 k = f (x k−1 ) . Additionally, x k−1 = f (x k−2 ) = f (δx k−1 ) = f (δ2 x k ) and in the same way, x k =
f ( f (δ2 x k )) . Therefore, the expression f μ(δμx k ) for μ > 0, should be clear from the recursion

f i (δi x k ) = f 
(

f i−1 (δi x k ) 
)

f 1 (δx k ) = f (δx k ) 

or some i ∈ N . Notice that, the operators δ and 

ˆ δ satisfy the following relation: δi ˆ δ−i ϕ k =
 ϕ k , ˆ δi ϕ k } since δi { ϕ k , δ

−1 ϕ k , . . . , δ
−i ϕ k } = { δi ϕ k , δ

i−1 ϕ k , . . . , δϕ k , ϕ k } . Then, the evolution of
he state vector is equivalent to the next sequence 

 k+1 = δ−1 x k = f (x k ) , 

 k+2 = δ−2 x k = f ( f (x k )) , 
. . . 

x k+ i = δ−i x k = f ( f i−1 (x k )) (3)

urthermore, by considering (3) in an iterative form, we obtain 

 k = δ f (x k ) = f (δx k ) , 

 k = f (δ( f (δx k ))) = f ( f (δ2 x k )) , 

. . . 

 k = f ( f i−1 (δi x k )) (4)

In a similar way, we can define the following finite sequence of the output signal 

y k = h(x k ) = h( f 0 (x k )) , 

 k+1 = δ−1 (h(x k )) = h( f (x k )) , 

 k+2 = δ−1 h( f (x k )) = h( f 2 (x k )) , 

. . . 

y k+ i = h( f i (x k )) (5)
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hich can be express as 

 [ k ,k + i] = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

y k 
y k+1 

. . . 
y k+ i 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

h(x k ) 
h( f (x k )) 

. . . 
h( f i (x k )) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= H (x k ) (6)

In a further step of this work, the expression (6) will be useful for the state observer
esign. 

.2. Fixed point iteration problem 

In numerical analysis, the roots or solution of a system of nonlinear equations are com-
only found with a linear approximation. In addition, the problem can be directly addressed

y some algorithms, such as Newton’s method, Whittaker’s method, Halley’s method, etc.
onetheless, these algorithms are computationally expensive due to a continuous evaluation
f one or more derivatives and the computation of a map inverse. 

As an alternative, we can use the fixed point iteration method or successive approximation
ethod. Briefly speaking, this method consists in expressing a system of nonlinear equa-

ions F (x) = 0 as x = G (x) , e.g., with G (x) = x + aF (x) . Then, an iteration method can be
efined as x (l+1) = G (x (l ) ) , where l ∈ N and x (i) is the i-th approximation or iteration of x.
his process is repeated for l ≥ 0 until a value p is found, for which we have G (p) = p.
hus, the solution of the original system of nonlinear equations is precisely p, i.e., F (p) = 0.

emark 1. Strictly speaking, every iteration method has the form x (l+1) = x (l ) +
(x (l ) ) F (x (l ) ) . If � = −J −1 , where J is the Jacobian matrix of F , then we obtain the New-

on’s iteration method. Here, we work with a class of iteration methods, where � is a constant,
r in our case, equal to an identity. This methods are known as fixed point iteration methods
24,25] . 

efinition 1 ( [24] ) . A function G (x) of D ⊂ R 

n on R 

n has a fixed point in p ∈ D if G (p) = p.

heorem 1 ( [24] ) . Let D = { x = ( x 1 , x 2 , . . . , x n ) 
T | a i ≤ x i ≤ b i , ∀ i = 1 , 2, . . . , n} for some set

f constants a 1 , a 2 , . . . , a n and b 1 , b 2 , . . . , b n . Suppose that G is a continuous function of
 ⊂ R 

n on R 

n such that G (x) ∈ D for any x ∈ D. Then G has a fixed point at D. Suppose
urther that G has continuous partial derivatives and that there is a constant | K | < 1 such
hat 

∂g i (x) 

∂ x j 

∣∣∣∣ ≤ K, ∀ x ∈ D, 

or any j = 1 , 2, . . . , n and every function g i , component of G . Then, the sequence { x (l ) } ∞ 

l=0 ,
ith arbitrary initial value x (0) ∈ D, and generated by 

 

(l+1) = G 

(
x (l ) 

)
, l ∈ N , 

onverges to a unique fixed point p ∈ D and 

x (l ) − p 

∥∥ ≤ K 

l 

1 − K 

∥∥x (1) − x (0) 
∥∥
6761 
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emark 2. The condition imposed to the partial derivatives implies that G is a contraction
ap on D. This is an immediate consequence of the mean value theorem and further details

an be found in [25] . 

Also, let us introduce the following definition that will be useful in a later section. 

efinition 2 ( [26] ) . A sequence 
{
x (l ) 

}∞ 

l=0 is said to converge linearly to p with rate ρ ∈ (0, 1)

f there is a constant c > 0 such that 

x (l ) − p 

∥∥ ≤ cρ l , ∀ l ∈ N (7)

. Fixed-Point state observer 

In what follows, we show that the fixed point iteration method can be used to design a
tate estimator by considering the representation (6) of the output signal. 

Let us consider once more the system (2) , with x k partially known for any time instant k.
esides, consider the following assumptions: 

A1. The T-sampled system (2) is observable for the output sampling conditions and obeys
the Theorem in [27] , i.e., there exist T 0 > 0 such that the system is observable for any
T ≤ T 0 . 

A2. The n − 1 previous measurements of any time instant k are retained, i.e.,
y k−n+1 , y k−n+2 , . . . , y k−1 are available. 

To estimate the full state from the system’s output y k and a finite number of previous
easurements, we propose the following methodology: 
Let Y [ k −n+1 ,k ] denote the vector of n consecutive measurements from time instant k −

 + 1 to instant k, i.e., Y [ k −n+1 ,k ] = [ y k−n+1 , y k−n+2 , . . . , y k ] T . Note that, by considering the
epresentation (6) , we have that 

 [ k −n+1 ,k ] = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

y k−n+1 

y k−n+2 
. . . 

y k 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

h(x k−n+1 ) 

h( f (x k−n+1 )) 
. . . 

h( f n−1 (x k−n+1 )) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= H (x k−n+1 ) (8)

We can reorganize the last expression as the following root search problem, 

 (x k−n+1 ) = Y [ k −n+1 ,k ] − H (x k−n+1 ) = 0 (9)

To solve the last problem, let us express (9) as 

 [ k −n+1 ,k ] − H (x k−n+1 ) + x k−n+1 − x k−n+1 = 0 (10)

uch that 

 k−n+1 = x k−n+1 + Y [ k −n+1 ,k ] − H (x k−n+1 ) = G (x k−n+1 ) (11)

For now, let us assume that (11) has solution x ∗k−n+1 ∈ D. Therefore, given an initial

ondition or guess x (0) 

k−n+1 ∈ D, all iterated values x (l ) k−n+1 ∈ D and converge to the fixed point
 

∗
k−n+1 ( Theorem 1 ), i.e., 

 

∗
k−n+1 = lim 

l→∞ 

x (l+1) 

k−n+1 = lim 

l→∞ 

G 

(
x (l ) k−n+1 

)
= G 

(
lim 

l→∞ 

x (l ) k−n+1 

)
= G 

(
x ∗k−n+1 

)
(12)
6762 
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here the iterated values x (l ) k−n+1 are obtained from the following iteration method 

 

(l+1) 

k−n+1 = x (l ) k−n+1 + Y [ k −n+1 ,k ] − H 

(
x (l ) k−n+1 

)
, l ∈ N (13)

Under this assumptions, we note that every value in the sequence 
{ 

x (l ) k−n+1 

} ∞ 

l=0 
, including

 

∗
k−n+1 , is an approximation of the solution of (9) . In other words, these values are actually
n estimation of the real state x k−n+1 . 

Thus, in accordance with the usual notation from control theory for estimated values, let
s express the iteration method (13) as 

ˆ  (l+1) 

k−n+1 = ˆ x (l ) k−n+1 + Y [ k −n+1 ,k ] − H ( ̂  x (l ) k−n+1 ) , l ∈ N (14)

nd the fixed point as ˆ x ∗k−n+1 . Notice that the expression (14) has the general form of the
teration methods, with F = Y [ k −n+1 ,k ] − H and � = I ( remark 1 ). 

Furthermore, since ˆ x ∗k−n+1 is the estimate at k − n + 1 , we obtain the estimate at the time
nstant k by propagating the fixed point n − 1 steps forward, i.e., 

ˆ  k = f n−1 
( ˆ x ∗k−n+1 

)
(15)

Observe that the root search problem (9) needs to be solved for every time instant. There-
ore, it is said that the Fixed-Point state observer algorithm consists in decomposing the state
stimation into a set of consecutive fixed point iteration problems (one problem for each time
nstant). Based on the above, we establish the following theorem. 

heorem 2. If the iteration method (14) obeys Theorem 1 , then for any time instant k, the
equence { ̂  x (l ) k−n+1 } ∞ 

l=0 converges to ˆ x ∗k−n+1 , solution of the root search problem (9) . That is to
ay, the expression (14) is a Fixed-Point state observer for the discrete-time nonlinear system
2) . 

roof. Let us consider a given time instant k. Then, since h is analytic, the function
 ( ̂  x k−n+1 ) = ˆ x k−n+1 + Y [ k −n+1 ,k ] − H ( ̂  x k−n+1 ) is continuous. On the other hand, according to
heorem 1 we have that G ( ̂  x k−n+1 ) ∈ D for every ˆ x k−n+1 ∈ D. Moreover, G is a contraction
ap, such that 

 G 

(
ˆ x (i) k−n+1 

)
− G 

(
ˆ x ( j) 
k−n+1 

)
‖ ≤ K ‖ ̂  x (i) k−n+1 − ˆ x ( j) 

k−n+1 ‖ , 
∀ ̂  x i k−n+1 , ˆ x ( j) 

k−n+1 ∈ D, i � = j (16)

ith | K | < 1 . Therefore, we have 

 ̂  x (l+1) 

k−n+1 − ˆ x (l ) k−n+1 ‖ = ‖ G 

(
ˆ x (l ) k−n+1 

)
− G 

(
ˆ x (l−1) 

k−n+1 

)
‖ 

≤ K ‖ ̂  x (l ) k−n+1 − ˆ x (l−1) 

k−n+1 ‖ (17)

Then, by induction 

 ̂  x (l+ c) 

k−n+1 − ˆ x (l+ c−1) 

k−n+1 ‖ ≤ K ‖ ̂  x (l+ c−1) 

k−n+1 − ˆ x (l+ c−2) 

k−n+1 ‖ ≤ · · · ≤ K 

c ‖ ̂  x (l ) k−n+1 − ˆ x (l−1) 

k−n+1 ‖ (18)

or every c ≥ 1 and l ≥ 0. Later, we have that 
c 

 

i=1 

‖ ̂  x (l+ i) 
k−n+1 − ˆ x (l+ i−1) 

k−n+1 ‖ ≤
(
K 

c + K 

c−1 + · · · + K 

)‖ ̂  x (l ) k−n+1 − ˆ x (l−1) 

k−n+1 ‖ (19)
6763 
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uch that 

 ̂  x (l+ c) 

k−n+1 − ˆ x (l ) k−n+1 ‖ ≤
(
K 

c + K 

c−1 + · · · + K 

)
K 

l−1 ‖ ̂  x (1) 

k−n+1 − ˆ x (0) 

k−n+1 ‖ (20)

hus, we prove that { ̂  x (l ) k−n+1 } ∞ 

l=0 is a Cauchy sequence and therefore it has a limit, such that

im l→∞ 

G ( ̂  x (l ) k−n+1 ) = G ( ̂  x ∗k−n+1 ) = ˆ x ∗k−n+1 . Then, if c → ∞ , it happens that 

 ̂  x (l ) k−n+1 − ˆ x ∗k−n+1 ‖ ≤
K 

l 

1 − K 

‖ ̂  x (1) 

k−n+1 − ˆ x (0) 

k−n+1 ‖ (21)

If l → ∞ , then 

K l 

1 −K → 0, therefore the sequence converges to the fixed point. Furthermore,

e can prove that ˆ x ∗k−n+1 is unique. Suppose that ˆ x (l ) k−n+1 → ˆ x ∗k−n+1 and ˆ x (l ) k−n+1 → ˆ z ∗k−n+1 as
 → ∞ . Thus, 

 ̂  x ∗k−n+1 − ˆ z ∗k−n+1 ‖ = ‖ ̂  x ∗k−n+1 − ˆ x (l ) k−n+1 + ˆ x (l ) k−n+1 − ˆ z ∗k−n+1 ‖ 
≤ ‖ ̂  x ∗k−n+1 − ˆ x (l ) k−n+1 ‖ + ‖ ̂  x (l ) k−n+1 − ˆ z ∗k−n+1 ‖ → 0 (22)

uch that ˆ x ∗k−n+1 = ˆ z ∗k−n+1 , i.e., the fixed point is unique. �

Notice that the function G is a contraction map if ˆ x (0) 

k−n+1 is close enough to the fixed point
ˆ  ∗k−n+1 and in general, if 

∂g i ( ̂  x k−n+1 ) 

∂ ̂  x k, j 

∣∣∣∣ ≤ K, j = 1 , 2, . . . , n (23)

On the other hand, once the root search problem has been solved for the current time
nstant, we can set the initial guess for the following time instant as ˆ x (0) 

k−n+2 = ˆ x ∗k−n+1 . The
ogic behind this choice is that ˆ x ∗k−n+1 and the solution of the following equation system
ˆ  k−n+2 belong to the state trajectory of the discrete-time system (2) . Since we assume that
he continuous-time system that originates the sampled time version is given by a Lipschitz
unction, it is reasonable that ˆ x k−n+1 is close enough to the solution and therefore, G is a
ontraction map. 

In a further step, for simplicity we will denote ˆ x (i) k−n+1 as ω 

(i) 
k and Y [ k −n+1 ,k ] just as Y k , such

hat (14) is: 

 

(l+1) 

k = ω 

(l ) 
k + Y k − H 

(
ω 

(l ) 
k 

)
, l ∈ N (24)

here ω 

(i) 
k = ( w 

(i) 
1 ,k , w 

(i) 
2,k , . . . , w 

(i) 
n,k ) 

T . The last representation will be particularly useful to
void confusion during the numerical simulation. 

.1. �2 -Aitken accelerated convergence 

The main disadvantage of the fixed point iteration method, and therefore of the Fixed-
oint observer, is its low convergence speed. Unlike the Newton observer (with quadratic
onvergence), the proposed algorithm presents a linearly convergent sequence. Therefore, let
s incorporate the �2 -Aitken method to increase the convergence speed. 

Consider the following iteration method 

 

(l+1) = G 

(
x (l ) 

)
, l ∈ N (25)
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Suppose that (25) generates a convergent sequence 
{
x (l ) 

}∞ 

l=0 and that the iteration function
 satisfies conditions of Theorem 1 . Then, let us define the convergence error as 

 

(l ) = x (l ) − p (26)

here p is a fixed point. First, let us assume that the iterative method converges geometrically,
.e., 

 

(l+1) = K e (l ) , | K | < 1 (27)

uch that 

e (l+2) 

e (l+1) 
= 

e (l+1) 

e l 
(28)

hen, we have 

x (l+2) − p 

x (l+1) − p 

= 

x (l+1) − p 

x (l ) − p 

(29)

nd by expanding terms, we obtain (
x (l+2) − p 

)(
x (l ) − p 

) = 

(
x (l+1) − p 

)2 

x (l+2) x (l ) − px (l+2) − px (l ) + p 

2 = 

(
x (l+1) 

)2 − 2px (l+1) + p 

2 

2x (l+1) p − x (l+2) p − x (l ) p = 

(
x (l+1) 

)2 − x (l+2) x (l ) 

p 

(
2x (l+1) − x (l+2) − x (l ) 

) = 

(
x (l+1) 

)2 − x (l+2) x (l ) 

his is 

p = 

x (l+2) x (l ) − (
x (l+1) 

)2 

x (l+2) − 2x (l+1) + x (l ) 
(30)

r equivalently 

p = x (l ) −
(
x (l+1) − x (l ) 

)2 

x (l+2) − 2x (l+1) + x (l ) 
(31)

We can notice that under this geometric convergence assumption, the value of p can be
btained with only three consecutive values of the sequence 

{
x (l ) 

}∞ 

l=0 . However, in practice,
he solution of a system of nonlinear equations rarely exhibits this class of convergence.
nstead, it is much more common a convergence of the following type, 

 

(l+1) = K̄ e (l ) , K̄ = K + δ̄(l ) , l ∈ N (32)

Clearly, the sequence 
{
e (l ) 

}∞ 

l=0 converges linearly to zero if and only if | K̄ | < 1 . Therefore,
he sequence of δ̄(l ) should tend to zero as l → ∞ . Since 0 < 1 − K < 1 , there exists δ̄(l )

uch that 

 ≤ δ̄(l ) < 1 − K < 1 , ∀ l ∈ N (33)

hat is due to the Archimedean property. Thus, let δ̄(l ) be 

¯(l ) = 

1 − K 

c̄ l 
, l ∈ N (34)
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ith constant c̄ > 1 . Evidently, δ̄(l ) → 0 as l → ∞ . On the other hand, according to
efinition 2 we know that x (l ) converges to the fixed point p (or e (l ) to zero) if 

x (l ) − p 

∥∥ = 

∥∥e (l ) 
∥∥ ≤ cρ l , ∀ l ∈ N (35)

ith c > 0 and 0 < ρ < 1 . Let us propose ρ = 1 − K , such that 

e (l ) 
∥∥ ≤ c ( 1 − K ) l (36)

r equivalently 

K̄ e (l ) 
∥∥ ≤ c ( 1 − K ) l+1 (37)

.e., (
K + 

1 − K 

c̄ l 

)
e (l ) 

∥∥∥∥ ≤ c ( 1 − K ) l+1 (38)

For simplicity, let us consider c̄ = c, such that (
K + 

1 − K 

c l 

)
e (l ) 

∥∥∥∥ ≤ c ( 1 − K ) l+1 = ε (l ) (39)

Then, the sequence ε (l ) is sufficiently large for all l ∈ N , if c >> 1 . Therefore, as a direct
onsequence, we have that the convergence will be linear if | K | >> δ̄(l ) . 

emark 3. We can notice that, since δ̄(l ) converges to zero, for some l 1 > l ∈ N sufficiently
arge we have that K̄ = K . Therefore, the expression (28) is valid and the proof continues in
he same way. 

Now, in the following we expect the quantities 

 

(l ) = x (l ) −
(
x (l+1) − x (l ) 

)2 

x (l+2) − 2x (l+1) + x (l ) 
(40)

o be closer to p than x (l ) . The expression (40) can be simplified with the following forward
ifference operator 

x (l ) = x (l+1) − x (l ) , l ∈ N (41)

uch that 
2 x (l ) = �(�x (l ) ) 

= �(x (l+1) − x (l ) ) 

= �x (l+1) − �x (l ) 

= 

(
x (l+2) − x (l+1) 

)− (
x (l+1) − x (l ) 

)
= x (l+2) − 2x (l+1) + x (l ) 

Therefore, expression (40) is equivalent to 

 

(l ) = x (l ) −
(
�x (l ) 

)2 

�2 x (l ) 
, l ∈ N (42)

The last expression is the well-known �2 -Aitken method and is illustrated by Fig. 1 . Now,
et us consider the following assumptions: 
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Fig. 1. Graphical scheme of the �2 -Aitken method: sequence 
{
x (l ) 

}∞ 

l=0 is used to obtain a second sequence 
{
z (l ) 

}∞ 

l=0 , 
such that the convergence speed increases. 

e  

a

τ  

e  

w
 

c

T

 

•
{
x (l ) 

}∞ 

l=0 is a sequence that converges to p
•
{
z (l ) 

}∞ 

l=0 is the sequence generated by the iterative method (42) 

Let us consider the following variables 

 

(l ) = x (l ) − p (43)

nd 

(l ) = z (l ) − p (44)

Moreover, suppose that 

 

(l+1) = K̄ e (l ) = 

(
K + δ̄(l ) 

)
e (l ) � = 0, ∀ l ∈ N (45)

here | K̄ | < 1 and δ̄(l ) → 0 as l → ∞ . 
Then, the following result ensures that the �2 -Aitken method accelerates the linear type

onvergence of the iteration method. 

heorem 3. The sequence { z (l ) } ∞ 

l=0 converges faster than sequence { x (l ) } ∞ 

l=0 in the sense 

τ (l ) 

e (l ) 
= 

z (l ) − p 

x (l ) − p 

→ 0 as l → ∞ (46)
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roof. From (43) and (44) , we have that 

 

(l ) = e (l ) + p (47)

nd 

 

(l ) = τ (l ) + p = x (l ) −
(
δ̄(l ) x (l ) 

)2 

�2 x (l ) 
(48)

= x (l ) −
(
x (l+1) − x (l ) 

)2 

x (l+2) − 2x (l+1) + x (l ) 
(49)

Then, substituting (47) in (48) we get 

 

(l ) = e (l ) + p −
(
e (l+1) − e (l ) 

)2 

e (l+2) − 2e (l+1) + e (l ) 
(50)

uch that 

(l ) = e (l ) −
(
e (l+1) − e (l ) 

)2 

e (l+2) − 2e (l+1) + e (l ) 
(51)

On the other hand 

 

(l+1) − e (l ) = 

(
K + δ̄(l ) 

)
e (l ) − e (l ) = 

[
( K − 1 ) + δ̄(l ) 

]
e (l ) (52)

herefore, we have 

 

(l+2) − 2e (l+1) + e (l ) = 

(
K + δ̄(l+1) 

)
e (l+1) − 2 

(
K + δ̄(l ) 

)
e (l ) + e (l ) (53)

Then, since e (l+1) = (K + δ̄(l ) ) e (l ) , we have that 

 

(l+2) − 2e (l+1) + e (l ) = 

(
K + δ̄(l+1) 

)(
K + δ̄(l ) 

)
e (l ) − 2 

(
K + δ̄(l ) 

)
e (l ) + e (l ) 

= 

[
K 

2 + δ̄(l ) 
K + δ̄(l+1) 

K + δ̄(l+1) δ̄(l ) − 2K − 2 ̄δ(l ) + 1 

]
e (l ) 

= 

[
(K − 1) 2 + K ( ̄δ(l ) + δ̄(l+1) ) + δ̄(l+1) δ̄(l ) − 2 ̄δ(l ) 

]
e (l ) 

= 

[
(K − 1) 2 + λ(l ) 

]
e (l ) (54)

here λ(l ) = K ( ̄δ(l ) + δ̄(l+1) ) + δ̄(l+1) δ̄(l ) − 2 ̄δ(l ) and satisfies 
(l ) → 0 as l → ∞ 

By substituting (52) and (54) in (51) , we obtain 

(l ) = e (l ) −
[
(K − 1) + δ̄(l ) 

]2 (
e (l ) 

)2 [
(K − 1) 2 + λ(l ) 

]
e (l ) 

= e (l ) −
[
(K − 1) + δ̄(l ) 

]2 

(K − 1) 2 + λ(l ) 
e (l ) 

= 

[ 
(K − 1) 2 + λ(l ) − (K − 1) 2 − 2 ̄δ(l ) (K − 1) − (

δ̄(l ) 
)2 
] 
e (l ) 

(K − 1) 2 + λ(l ) 
(55)

his is 

(l ) = 

λ(l ) − 2 ̄δ(l ) (K − 1) − (
δ̄(l ) 

)2 

(K − 1) 2 + λ(l ) 
e (l ) (56)
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uch that 

τ (l ) 

e (l ) 
= 

λ(l ) − 2 ̄δ(l ) (K − 1) − (
δ̄(l ) 

)2 

(K − 1) 2 + λ(l ) 
→ 0 as l → ∞ (57)

Hence, the expression (57) implies that { τ (l ) } ∞ 

l=0 → 0 faster than { e (l ) } ∞ 

l=0 . �

.2. Steffensen accelerate convergence 

In the above proof, we can note that if δ̄(l ) is such that lim l→ 0 
δ̄(l+1) 

δ̄(l ) = β, β ∈ R , then the
onvergence of sequence { z (l ) } ∞ 

l=0 can be accelerated once more by means of the �2 -Aitken
ethod. Therefore, we propose to implement the Steffensen method, which is described below.

emark 4. Observe that only in this subsection, the subindex of x ( j) 
i denotes that the three-

lement sequence { x ( j) 
i } 2 j=0 was generated after applying i − 1 times the �2 -Aitken method. 

Given a initial guess x (0) 
1 , we calculated two additional values by means of the iterative

ethod (25) , i.e., we obtain the three-element sequence { x (0) 
1 , x (1) 

1 , x (2) 
1 } . Then, the �2 -Aitken

ethod is applied, such that 

 

(0) 
2 = x (0) 

1 −
(

x (1) 
1 − x (0) 

1 

)2 

x (2) 
1 − 2x (1) 

1 + x (0) 
1 

(58)

Next, the value x (0) 
2 is used as new initial guess, such that two additional values are

btained, i.e., 

 

(1) 
2 = G 

(
x (0) 

2 

)
, 

 

(2) 
2 = G 

(
x (1) 

2 

)
, 

nd the Aitken method is applied again 

 

(0) 
3 = x (0) 

2 −
(

x (1) 
2 − x (0) 

2 

)2 

x (2) 
2 − 2x (1) 

2 + x (0) 
2 

(59)

Thus, this process repeats until the fixed point is obtained. Fig. 2 graphically describes
his process. 

.3. Stop criterion 

The results shown above prove that the sequence generated by the iteration method of the
tate observer will converge to a unique fixed point. However, this analysis is valid just for
he set of real numbers, and when the method is implemented in a digital computer, due to
nite precision issues, the method will inevitably have a persistent error, such as is shown in
28] . In other words, depending on the precision of the floating point number’s representation,
he sequence will converge to a value close to the fixed point, and in the best scenario, to
he fixed point itself. 
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Fig. 2. Proposed Steffensen method. A three-element sequence is generated and then the �2 -Aitken method is 
applied. The result is then used to generate a new sequence of three elements and the Aitken method is applied one 
more time and so on. 
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Regardless of whether the method converges to the real fixed point or a near value, notice
hat the iteration method of the Fixed-Point observer does not specify a maximum num-
er of iterations, and therefore, the method (24) could continue indefinitely. Thus, to avoid
nnecessary iterations, we propose to implement a stop criterion. 

Let G : [ a, b] → [ a, b] be a Lipschitz function with Lipschitz constant L, 0 ≤ L < 1 and
onsider the iterative method (25) with fixed point p, such that 

 x (l+ q) − p| = | G 

(
x (l+ q−1) 

)− G (p) | ≤ L | x (l+ q−1) − p| (60)

.e., 

 | x (l+ q−1) − p| = L | G 

(
x (l+ q−2) 

)− G (p) | ≤ L 

2 | x (l+ q−2) − p| (61)

ence recursively, we have 

 x (l+ q) − p| ≤ L 

q | x (l ) − p| (62)

Thus, if G 

′ (p) � = 0, the number of iterations necessary to reduce the convergence error by
 factor of 10 

−m̄ satisfies 

 

q ≤ 10 

−m̄ (63)

uch that 

 ≤ m̄ 

log 10 

(
1 
L 

) (64)

emark 5. The expression (64) indicates the number of iterations q necessary to reach a
esired accuracy m̄ . In [18–20] , a similar criterion is established. However, the authors define
his criterion considering a fractional base logarithm since they take into account specific
ompact sets. 

Additionally, we can establish a second criterion based on the following observations 

emark 6. Let ε > 0, such that 

 x (l+1) − x (l ) | ≤ ( 1 − L ) ε (65)
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herefore 

 x (l ) − p| ≤ ε (66)

The proof is immediate, since 

 x (l ) − p| = | x (l ) − G 

(
x (l ) 

)+ G 

(
x (l ) 

)− p| 
≤ | x (l ) − x (l+1) | + L | x (l ) − p| (67)

.e., 

 x (l ) − p| ( 1 − L ) ≤ | x (l ) − x (l+1) | (68)

Then, since 0 ≤ L < 1 ⇒ ( 1 − L ) > 0, we have 

 x (l ) − p| ≤ 1 

1 − L 

| x (l+1) − x (l ) | ≤ 1 

1 − L 

( 1 − L ) ε = ε � (69)

emark 7. Since the convergence error monotonically tends to zero, we have that 

 x (l+1) − p| = | G 

(
x (l ) 

)− G ( p ) | ≤ L | x (l ) − p| < | x (l ) − p| (70)

herefore, the previous iteration has a greater convergence error than the current iteration. 
�

Based on the above, we can establish that 

 x (l+1) − x (l ) | = | G 

(
x (l ) 

)− G 

(
x (l−1) 

)| ≤ L | x (l ) − x (l−1) | < | x (l ) − x (l−1) | (71)

In practice, due to finite precision errors, it may be the case that 

 x (l+1) − x (l ) | ≥ | x (l ) − x (l−1) | (72)

or some l . In such scenario, the method is stopped. In general, the iteration method will stop
hen 

 x (l ) − x (l−1) | < 10 

−m̄ (73)

emark 8. Note that if the Aitken’s method is included in the Fixed-Point observer scheme,
e could also have the following scenarios: 1) If the exact solution is reached, then two

terations later the Aitken method will have a singularity (division by zero). 2) The method
an have an iteration loop due to floating-point issues (finite precision). Therefore, whenever
he sequence presents three equal consecutive values, the algorithm also must be stopped. 

.4. Newton observer 

For comparison purposes, we briefly introduce the Newton observer algorithm [10] . This
s based on the well-known Newton-Raphson method and is given by 

ˆ  (l+1) 

k−n+1 = ˆ x (l ) k−n+1 + 

⎡ 

⎣ 

∂H 

(
ˆ x (l ) k−n+1 

)
∂ ̂  x k−n+1 

⎤ 

⎦ 

−1 (
Y [ k −n+1 ,k ] − H 

(
ˆ x (l ) k−n+1 

))
, 

l = 0, 1 , 2, . . . , r − 1 (74)
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here ˆ x (i) k−n+1 = ( ̂ x (i) 1 ,k−n+1 , ̂  x (i) 2,k−n+1 , . . . , ̂  x (i) n,k−n+1 ) 
T and the design parameter r is the maximum

umber of iterations. As in the Fixed-Point observer, the state estimation at the time instant
is found by propagating n − 1 steps forward the value ˆ x (r) 

k−n+1 , i.e., 

ˆ  k = f n−1 
(

ˆ x (r) 

k−n+1 

)
(75)

nd then, for the following time instant, we select ˆ x (r) 

k−n+1 as initial guess of the iteration
ethod. 
To avoid confusion, let us consider as well the notation ˆ x (i) k−n+1 = ω 

(i) 
k and Y [ k −n+1 ,k ] = Y k ,

uch that the Newton observer is 

 

(l+1) 

k = ω 

(l ) 
k + 

⎡ 

⎣ 

∂H 

(
ω 

(l ) 
k 

)
∂ω k 

⎤ 

⎦ 

−1 (
Y k − H 

(
ω 

(l ) 
k 

))
, 

l = 0, 1 , 2, . . . , r − 1 (76)

The main disadvantage of the Newton observer is the computation of the Jacobian matrix
nd the corresponding inverse at each iteration and for each time instant. This continuous
valuation of the partial derivatives is time-consuming and increases the computational cost
18–20] . There are some strategies that allow avoiding the Jacobian matrix, such as the
inite Difference Approximations method, Variational Equation method and the Maximum
rinciple method (see [17,19,29] for further details). However, the first requires solving a
ystem of n equations n times in the interval between time instants k and k + n − 1 . In
ddition, it requires identifying additional parameters, which depend on the time scale, the
ystem parameters and the dynamics of the model. On the other hand, the second method
equires solving n 

2 equations between time instants k and k + n − 1 . Meanwhile, in the last
ethod, n equations must be solved n times backward by considering different integration

ntervals. 

emark 9. If the overall change around the point of interest is zero, the inverse of the
acobian matrix does not exist and therefore, the Newton observer fails. This scenario would
lso imply that the system is non-observable such that is not possible to estimate the unknown
tates from the available output. 

. Example and numerical results 

In the following section, we present the implementation of the Fixed-Point observer to
stimate the unknown states of a modified Chua chaotic attractor [30] . The Chua’s system
s the mathematical modelling of the well known Chua’s circuit, a simple circuit that ex-
ibits chaotic behaviour and was created to produce nonperiodic oscillations, which have,
oth theoretical and practical applications, such as in secure communications [31–34] . The
quations that describe the attractor are the following: 

˙  1 (t ) = α

[
x 2 (t ) + b sin 

(
πx 1 (t ) 

2a 

+ d 

)]
˙  2 (t ) = x 1 (t ) − x 2 (t ) + x 3 (t ) 

˙  3 (t ) = −βx 2 (t ) 

y(t ) = x 1 (t ) (77)
6772 



R. Martínez-Guerra and J.P. Flores-Flores Journal of the Franklin Institute 360 (2023) 6757–6782 

w  

c  

v

x

x

x

 

w  

4

Y  

a

H  

ω

 

w

G  

 

c  
here the state vector is x = ( x 1 , x 2 , x 3 ) 
T . Meanwhile, the parameters α, β, a, b and d are

onstant values. An alternative discrete-time representation of system (77) can be obtained
ia a forward finite differences discretization scheme, such that the T -sampled system is: 

 1 ,k+1 = x 1 ,k + αT 
[ 
x 2,k + b sin 

(πx 1 ,k 
2a 

+ d 

)] 
= f 1 (x k ) 

 2,k+1 = x 2,k + T 
(
x 1 ,k − x 2,k + x 3 ,k 

) = f 2 (x k ) 

 3 ,k+1 = x 3 ,k − βT x 2,k = f 3 (x k ) 

y k = x 1 ,k (78)

ith x k = 

(
x 1 ,k , x 2,k , x 3 ,k 

)T 
. Then, we can design a Fixed-Point estimator for the system (78) .

.1. Fixed-Point estimator design for modified Chua chaotic attractor 

One can note that the system’s dimension is n = 3 . Therefore, we have 

 k = 

⎡ 

⎣ 

y k−2 

y k−1 

y k 

⎤ 

⎦ (79)

nd on the other hand, 

 (x k−2 ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

x 1 ,k−2 

x 1 ,k−2 + αT 
[
x 2,k−2 + b sin 

(πx 1 ,k−2 

2a + d 

)]⎛ 

⎝ 

x 1 ,k−2 + αT 
[
x 2,k−2 + b sin 

(πx 1 ,k−2 

2a + d 

)]
+ αT 

{
x 2,k−2 + T 

[
x 1 ,k−2 − x 2,k−2 + x 3 ,k−2 

]
+ b sin 

(
π
2a 

{
x 1 ,k−2 + αT 

[
x 2,k−2 + b sin 

(πx 1 ,k−2 

2a + d 

)]}+ d 

)}
⎞ 

⎠ 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(80)

Then, by considering the representation (24) of the Fixed-Point observer, we have that 

 

(l+1) 

k = ω 

(l ) 
k + Y k − H 

(
ω 

(l ) 
k 

)
= G (ω 

(l ) 
k ) 

= 

⎡ 

⎢ ⎣ 

w 

(l ) 
1 ,k 

w 

(l ) 
2,k 

w 

(l ) 
3 ,k 

⎤ 

⎥ ⎦ 

+ 

⎡ 

⎣ 

y k−2 

y k−1 

y k 

⎤ 

⎦ 

−

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

w 

(l ) 
1 ,k 

w 

(l ) 
1 ,k + αT 

[
w 

(l ) 
2,k + b sin 

(
πw 

(l ) 
1 ,k 

2a + d 

)]
⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

w 

(l ) 
1 ,k + αT 

[
w 

(l ) 
2,k + b sin 

(
πw 

(l ) 
1 ,k 

2a + d 

)]
+ αT 

{ 
w 

(l ) 
2,k + T 

[ 
w 

(l ) 
1 ,k − w 

(l ) 
2,k + w 

(l ) 
3 ,k 

] 
+ b sin 

(
π
2a 

{
w 

(l ) 
1 ,k + αT 

[
w 

(l ) 
2,k + b sin 

(
πw 

(l ) 
1 ,k 

2a + d 

)]}
+ d 

)}

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(81)

here 

 

(
ω 

(i) 
k 

)
= 

[ 
g 1 

(
ω 

(i) 
k 

)
, g 2 

(
ω 

(i) 
k 

)
, g 3 

(
ω 

(i) 
k 

)] T 
(82)

Then, to guarantee convergence of the iteration method we need to find acceptable initial
onditions. To achieve this, we analyze the partial derivatives of G and select initial conditions
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z
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w
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a

 

uch that the absolute value of each partial derivative is less than 1 (contraction map). It is
asy to note that 

∂g 1 

(
ω 

(i) 
k 

)
∂ w 1 ,k 

∣∣∣∣∣∣ = 0, 

∣∣∣∣∣∣
∂g 1 

(
ω 

(i) 
k 

)
∂ w 2,k 

∣∣∣∣∣∣ = 0, 

∣∣∣∣∣∣
∂g 1 

(
ω 

(i) 
k 

)
∂ w 3 ,k 

∣∣∣∣∣∣ = 0, 

∣∣∣∣∣∣
∂g 2 

(
ω 

(i) 
k 

)
∂ w 3 ,k 

∣∣∣∣∣∣ = 0 (83)

On the other hand, we have that 

∂g 2 

(
ω 

(i) 
k 

)
∂ w 1 ,k 

∣∣∣∣∣∣ = 

∣∣∣∣1 + 

αT bπ

2a 

z̄ 1 

∣∣∣∣ < 1 , 

∂g 2 

(
ω 

(i) 
k 

)
∂ w 2,k 

∣∣∣∣∣∣ = 

| 1 − αT | < 1 , 

∂g 3 

(
ω 

(i) 
k 

)
∂ w 1 ,k 

∣∣∣∣∣∣ = 

∣∣∣∣1 + 

αT bπ

2a 

(
z̄ 1 + z̄ 2 + 

αT bπ

2a 

z̄ 1 ̄z 2 

)
+ αT 2 

∣∣∣∣ < 1 , 

∂g 3 

(
ω 

(i) 
k 

)
∂ w 2,k 

∣∣∣∣∣∣ = 

∣∣∣∣2αT − αT 2 + 

α2 T 2 πb 

2a 

z̄ 2 

∣∣∣∣ < 1 , 

∂g 3 

(
ω 

(i) 
k 

)
∂ w 3 ,k 

∣∣∣∣∣∣ = 

∣∣αT 2 − 1 

∣∣ < 1 (84)

ith 

¯ 1 = cos 

( 

πw 

(i) 
1 ,k 

2a 

+ d 

) 

¯ 2 = cos 

( 

πw 

(i) 
1 ,k 

2a 

+ 

αT πw 

(i) 
2,k 

2a 

+ 

αT πb 

2a 

sin 

( 

πw 

(i) 
1 ,k 

2a 

+ d 

) 

+ d 

) 

The system of inequalities (84) can be solved by means of a mathematical software. Thus,
ith the help of Wolfram Mathematica we find that the inequalities are satisfied if 

 ∈ 

(
0, 

2 

α

)
(85)

.2. Newton observer design for modified Chua chaotic attractor 

For comparison purposes, we implement the Newton observer to the Chua attractor. Thus,
ccording to the Newton observer algorithm, we have that the Jacobian matrix is 

∂H (ω 

(i) 
k ) 

∂ω k 
= 

⎡ 

⎣ 

1 0 0 

H̄ 2, 1 αT 0 

H̄ 3 , 1 H̄ 3 , 2 αT 2 

⎤ 

⎦ (86)
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¯
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( 
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) 

¯
 3 , 1 = H̄ 2, 1 + αT 2 + 
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αT πb 

2a 
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( 
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1 ,k 
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C 

¯
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2a 

C 

nd where 

 = cos 

( 

π

2a 

{ 

w 

(i) 
1 ,k + αT 

[ 

w 

(i) 
2,k + b sin 

( 

πw 

(i) 
1 ,k 

2a 

+ d 

) ] } 

+ d 

) 

Hence, the Newton observer is given by 

 

(l+1) 

k = ω 

(l ) 
k + 

[ 

∂H (ω 

(l ) 
k ) 

∂ω k 

] −1 [ 
Y k − H (ω 

(l ) 
k ) 

] 
(87)

or l = 0, 1 , 2, . . . , r − 1 and with Y k and H (ω 

(l ) 
k ) as in the Fixed-Point observer. Note that

e have already considered the representation (76) of the Newton observer. Finally, the state
stimate at time instant k is 

ˆ  k = 

⎛ 

⎝ 

ˆ x 1 ,k 
ˆ x 2,k 

ˆ x 3 ,k 

⎞ 

⎠ = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

f 2 1 

(
w 

(r) 

1 ,k , w 

(r) 

2,k , w 

(r) 

3 ,k 

)
f 2 2 

(
w 

(r) 

1 ,k , w 

(r) 

2,k , w 

(r) 

3 ,k 

)
f 2 3 

(
w 

(r) 

1 ,k , w 

(r) 

2,k , w 

(r) 

3 ,k 

)
⎞ 

⎟ ⎟ ⎟ ⎠ 

(88)

.3. Results and comparison discussion 

Now, we show the numerical results obtained by the Fixed-Point estimator. These results are
ompared with those obtained by the Newton observer, a discrete-time Luenberger nonlinear
bserver and a discrete-time sliding mode observer. 

Let us consider the following parameters for the modified Chua attractor: α = 10. 82, β =
4. 286 , a = 1 . 3 , b = 0. 11 and d = 1 . Therefore, by considering (85) , we set the sampling
ime as T = 0. 05 . 

For the Fixed-Point estimator we consider ω 

(0) 
0 = [ 5 , 10, −5 ] T as initial guess and m̄ =

0 

−5 for its stop criterion. The same initial guess is considered for the Newton observer 
On the other hand, we implement the following discrete-time Luenberger nonlinear ob-

erver: 

 ̂

 x k+1 = f ( L ̂  x k ) + L̄ 

(
y k − L ̂  y k 

)
L ̂  y k = L ̂  x 1 ,k (89)

here L ̂  x k and L ̂  y k are the Luenberger observer state vector and output, respectively. L̄ ∈ R 

3

s the Luenberger gain, which was selected as L̄ = [ 0. 5 , 0. 4, 0. 2 ] T . The initial conditions for
his observer are ˆ x = [ 5 , 10, −5 ] T . 
L 0 
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In addition, we consider the following sliding mode observer: 

M ̂

 x k+1 = f ( SM ̂

 x k ) + Q 

(
y k − SM ̂

 y k 
)+ S(k) 

SM ̂

 y k = SM ̂

 x 1 ,k (90)

here SM ̂

 x k and SM ̂

 y k are state vector and output of the observer, respectively. Q ∈ R 

3 is a
ain vector and S(k) is a saturation function given by 

(k) = R sat 

(
y k − SM ̂

 y k 
γ

)
(91)

ith R = [ r 1 , r 2 , r 3 ] T , r 1 > 0, r 2 > 0, r 3 > 0 and γ > 0. The following values are selected for
hese parameters: Q = [ 0. 1 , 0. 2, 0. 1 ] T , R = [ 4. 1 , 2. 1 , 3 . 9 ] T and γ = 10. Meanwhile, the initial
onditions are SL ̂  x 0 = [ 5 , 10, −5 ] T . It is worth mentioning that the gain parameters of this and
he last observer, were chosen based on an LMI approach. All the following simulations were
erformed on a machine with an Intel Core i7-4770k, 8 GB memory RAM installed and
atlab 2020b. 
Figs. 3 and 4 show the estimates made by each of the state observers. All of them are

apable of an adequate state estimation. However, we can appreciate that the estimates of the
ixed-Point and the Newton estimators are closer to the real state values since the very first

ime instants. This is due to the nature of these. Remember that for any time instant a root
earch problem is solved, this is, an accurate estimation is obtained since the very first time
nstants, as is shown in the figure. On the other hand, the estimates made by the Luenberger
nd sliding mode observers present a transition behaviour, i.e., converge to the actual state
fter several time instants. 

In Fig. 5 we can observe the estimation error of each observer. Note that the estimation
rror is defined for any time instant k as the difference between the real state and the estimated
alue ( e k = x k − ˆ x k ). In this figure we note again how the Luenberger and sliding mode
bservers require several time instants before converging to the real state. On the other hand,
e can observe that the estimates of the Fixed-Point and Newton estimators present certain
oise. Nonetheless, let us consider the mean square error (MSE): 

SE = 

1 

M 

M ∑ 

i=1 

(
x i − ˆ x i 

)2 
(92)

here M is the total number of time instants of the simulation. Then, when we calculate
he MSE (considering the whole interval) of each estimator, we find out that the Fixed-Point
stimator has the best performance. 

ixed-Point observer: MSE = 0. 0165 

ewton observer: MSE = 0. 0180 

uenberger observer: MSE = 0. 3335 

liding-Mode observer: MSE = 0. 3025 

It is clear that as the number of time instants considered in the simulation grows, the
erformance of all observers tends to be equal. Although, it is important to have in mind
hat the Fixed-Point estimator, does not require determining a great number of additional
arameters and its estimates are close to the real state values since the very first-time instants.

Finally, in Fig. 6 we observe the sequences generated at time instant k = 3 by the Newton
bserver (a) and by the Fixed-Point estimator considering the different accelerated convergence
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Fig. 3. Modified Chua chaotic attractor: estimates obtained by the different observers, a) ˆ x 2 and b) ˆ x 3 . 

Fig. 4. Modified Chua chaotic attractor space state and the different state estimates. 
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Fig. 5. Modified Chua chaotic attractor estimation error for the different state observers: a) e 2 = x 2,k − ˆ x 2,k and b) 
e 3 = x 3 ,k − ˆ x 3 ,k . 

s  

t  

g
 

t  

o  

m  

a

chemes. The red line represents the sequence { w 

(l ) 
2,k } ∞ 

l=0 , while the green line corresponds to

he sequence { w 

(l ) 
3 ,k } ∞ 

l=0 . We show the sequences at this time instant since it is when the initial
uess is farthest from the fixed point. 

Observe that all sequences converge to the fixed point 
[
y k , 2. 1428 , −0. 1648 

]T 
. However,

he convergence speed of each is different. The Newton observer converges faster since it
nly requires three iterations. It is followed by the Fixed-Point estimator with Steffensen
ethod (42 iterations), then with the Aitken method (139 iterations) and finally without any

ccelerated convergence scheme (284 iterations). 
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Fig. 6. Sequences convergence at time instant k = 3 : a) Newton observer, b) Fixed-Point estimator with no accelerated 
convergence, c) Fixed-Point estimator with �2 -Aitken accelerated convergence and d) Fixed-Point estimator with 
Steffensen accelerated convergence. 
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m

5

 

t  
Although the Newton observer requires very few iterations, compared to the Fixed-Point
stimator, the latter has a lower computational cost. This is reflected in the elapsed time
equired to execute the algorithms: 0.040140 seconds for the Fixed-Point estimator (Steffensen
ethod) and 0.250582 seconds for the Newton observer. 

. Conclusions 

In this work, we have presented an alternative algorithm for the state estimation of discrete-
ime nonlinear systems. We named this algorithm as Fixed-Point observer with Steffensen-
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itken accelerated convergence. We have addressed the state estimation problem as a set of
onsecutive fixed point iteration problems. We relied on the fixed point concept to design the
bserver and, in particular, to choose the sampling time and the initial guess of the iteration
ethod. Additionally, we have used the �2 -Aitken method to increase the convergence speed.
wo schemes were considered: 1) using only the Aitken method and 2) applying the Aitken
ethod multiple times (Steffensen method). 
Our proposal has a simple structure, does not require the identification of a great number

f additional parameters (such as gains), its estimates are close to the real state since the very
rst-time instants and compared to a similar algorithm such as the Newton observer, does not
equire complex calculations. Due to all this, the Fixed-Point estimator is less time-consuming
nd easy to implement. In addition, to avoid unnecessary calculations, the algorithm incorpo-
ates a stop criterion for the iteration method. All the corresponding mathematical analyses
ave been presented. 

The numerical example shows that our proposal is capable of reconstructing the unknown
ariables from a discrete-time sample. Moreover, the Fixed-Point estimator has the best per-
ormance. The last claim is validated by the MSE criterion. Besides, the results show that the
econd convergence acceleration scheme (Steffensen method) has indeed the best performance.
s can be observed in Fig. 6 c and d, with the Steffensen approach, the necessary number
f iterations before satisfying the stop criterion and therefore the specified convergence error,
ecreases from 130 to 43. This of course traduces into a computational cost even lower than
he Fixed-Point observer can have by itself. 

For the Fixed-Point estimator, it is necessary to analyze the partial derivatives of its iteration
ethod to find the conditions that ensure its convergence. Therefore, the initial guess is

estricted to a specific set. However, this is a common issue in all state observers that demands
ore attention. On the other hand, numerical results show that the iteration method still

equires a considerable amount of iterations before converging. Therefore, in the future we
retend to implement an iterative method able to further reduce the number of iterations and
herefore, the computational cost. Also, we will try to extend the set of acceptable initial
uesses of the algorithm. At this moment, our first approach is based on the iterative Gauss-
eidel method for systems of nonlinear equations. 
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