# Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Plants 

A. Polyakov<br>Laboratory of Adaptive and Robust Control Systems, Institute of Control Sciences, RAS, Moscow, Russia

## Outline

## (1) Introduction

## Outline

(1) Introduction

(2) Problem Statement

## Outline

(1) Introduction
(2) Problem Statement
(3) Nonlinear Feedback Design for a Fixed-Time Stabilization

## Outline

(1) Introduction
(2) Problem Statement
(3) Nonlinear Feedback Design for a Fixed-Time Stabilization
(4) Example

## Stability in Control

## Stability in Control

I. Asymptotic stability : $x\left(t, x_{0}\right) \rightarrow 0$ as $t \rightarrow \infty$;

## Stability in Control

I. Asymptotic stability : $x\left(t, x_{0}\right) \rightarrow 0$ as $t \rightarrow \infty$;

$$
\begin{gathered}
\dot{x}(t)=-x^{3}, \quad x(0)=x_{0} \\
x \in \mathbb{R}, t>0
\end{gathered}
$$

## Stability in Control

I. Asymptotic stability : $x\left(t, x_{0}\right) \rightarrow 0$ as $t \rightarrow \infty$;

$$
\begin{gathered}
\dot{x}(t)=-x^{3}, \quad x(0)=x_{0} \\
x \in \mathbb{R}, t>0
\end{gathered}
$$

II. Exponential stability : $\left\|x\left(t, x_{0}\right)\right\| \leq C e^{-a t}, C, a>0$;

## Stability in Control

I. Asymptotic stability : $x\left(t, x_{0}\right) \rightarrow 0$ as $t \rightarrow \infty$;

$$
\begin{gathered}
\dot{x}(t)=-x^{3}, \quad x(0)=x_{0} \\
x \in \mathbb{R}, t>0
\end{gathered}
$$

II. Exponential stability : $\left\|x\left(t, x_{0}\right)\right\| \leq C e^{-a t}, C, a>0$;

$$
\begin{gathered}
\dot{x}(t)=-a x, \quad x(0)=x_{0} \\
x \in \mathbb{R}, t>0
\end{gathered}
$$

## Stability in Control

I. Asymptotic stability : $x\left(t, x_{0}\right) \rightarrow 0$ as $t \rightarrow \infty$;

$$
\begin{gathered}
\dot{x}(t)=-x^{3}, \quad x(0)=x_{0} \\
x \in \mathbb{R}, t>0
\end{gathered}
$$

II. Exponential stability : $\left\|x\left(t, x_{0}\right)\right\| \leq C e^{-a t}, C, a>0$;

$$
\begin{gathered}
\dot{x}(t)=-a x, \quad x(0)=x_{0} \\
x \in \mathbb{R}, t>0
\end{gathered}
$$

III. Finite-time stability: $\forall x_{0} \in \mathbb{R}^{n} \exists T=T\left(x_{0}\right): x\left(t, x_{0}\right)=0, \forall t \geq T$;

## Stability in Control

I. Asymptotic stability : $x\left(t, x_{0}\right) \rightarrow 0$ as $t \rightarrow \infty$;

$$
\begin{gathered}
\dot{x}(t)=-x^{3}, \quad x(0)=x_{0} \\
x \in \mathbb{R}, t>0
\end{gathered}
$$

II. Exponential stability : $\left\|x\left(t, x_{0}\right)\right\| \leq C e^{-a t}, C, a>0$;

$$
\begin{gathered}
\dot{x}(t)=-a x, \quad x(0)=x_{0} \\
x \in \mathbb{R}, t>0
\end{gathered}
$$

III. Finite-time stability: $\forall x_{0} \in \mathbb{R}^{n} \exists T=T\left(x_{0}\right): x\left(t, x_{0}\right)=0, \forall t \geq T$;

$$
\begin{gathered}
\dot{x}(t)=-x^{1 / 3}, \quad x(0)=x_{0} \\
x \in \mathbb{R}, t>0, T\left(x_{0}\right)=\frac{3}{2} x_{0}^{2 / 3}
\end{gathered}
$$

## Stability in Control

I. Asymptotic stability : $x\left(t, x_{0}\right) \rightarrow 0$ as $t \rightarrow \infty$;

$$
\begin{gathered}
\dot{x}(t)=-x^{3}, \quad x(0)=x_{0} \\
x \in \mathbb{R}, t>0
\end{gathered}
$$

II. Exponential stability : $\left\|x\left(t, x_{0}\right)\right\| \leq C e^{-a t}, C, a>0$;

$$
\begin{gathered}
\dot{x}(t)=-a x, \quad x(0)=x_{0} \\
x \in \mathbb{R}, t>0
\end{gathered}
$$

III. Finite-time stability: $\forall x_{0} \in \mathbb{R}^{n} \exists T=T\left(x_{0}\right): x\left(t, x_{0}\right)=0, \forall t \geq T$;

$$
\begin{gathered}
\dot{x}(t)=-x^{1 / 3}, \quad x(0)=x_{0} \\
x \in \mathbb{R}, t>0, T\left(x_{0}\right)=\frac{3}{2} x_{0}^{2 / 3}
\end{gathered}
$$

IV. Fixed-time stability : $\exists T_{\text {max }}>0: x\left(t, x_{0}\right)=0, \forall t>T_{\text {max }}, \forall x_{0} \in \mathbb{R}^{n}$;

## Stability in Control

I. Asymptotic stability : $x\left(t, x_{0}\right) \rightarrow 0$ as $t \rightarrow \infty$;

$$
\begin{gathered}
\dot{x}(t)=-x^{3}, \quad x(0)=x_{0} \\
x \in \mathbb{R}, t>0
\end{gathered}
$$

II. Exponential stability : $\left\|x\left(t, x_{0}\right)\right\| \leq C e^{-a t}, C, a>0$;

$$
\begin{gathered}
\dot{x}(t)=-a x, \quad x(0)=x_{0} \\
x \in \mathbb{R}, t>0
\end{gathered}
$$

III. Finite-time stability: $\forall x_{0} \in \mathbb{R}^{n} \exists T=T\left(x_{0}\right): x\left(t, x_{0}\right)=0, \forall t \geq T$;

$$
\begin{gathered}
\dot{x}(t)=-x^{1 / 3}, \quad x(0)=x_{0} \\
x \in \mathbb{R}, t>0, T\left(x_{0}\right)=\frac{3}{2} x_{0}^{2 / 3}
\end{gathered}
$$

IV. Fixed-time stability : $\exists T_{\text {max }}>0: x\left(t, x_{0}\right)=0, \forall t>T_{\text {max }}, \forall x_{0} \in \mathbb{R}^{n}$;

$$
\begin{gathered}
\dot{x}(t)=-x^{1 / 3}-x^{3}, \quad x(0)=x_{0} \\
x \in \mathbb{R}, t>0, T_{\max }=2.5
\end{gathered}
$$

## Polynomial Feedbacks

I. Robustness (Pervozvanski 1971)

$$
\dot{x}=\lambda x+u
$$

where $x \in \mathbb{R}$ - state, the number $\lambda \in \mathbb{R}$ is unknown, $u \in \mathbb{R}$ - control.

## Polynomial Feedbacks

I. Robustness (Pervozvanski 1971)

$$
\dot{x}=\lambda x+u
$$

where $x \in \mathbb{R}$ - state, the number $\lambda \in \mathbb{R}$ is unknown, $u \in \mathbb{R}$ - control. For

$$
u=-\mu x^{3} \quad \mu>0
$$

## Polynomial Feedbacks

I. Robustness (Pervozvanski 1971)

$$
\dot{x}=\lambda x+u
$$

where $x \in \mathbb{R}$ - state, the number $\lambda \in \mathbb{R}$ is unknown, $u \in \mathbb{R}$ - control. For

$$
u=-\mu x^{3} \quad \mu>0
$$

we have
if $\quad \lambda>0 \quad$ then $\quad x \rightarrow \pm \sqrt{\lambda / \mu}$ as $t \rightarrow+\infty$

$$
\text { if } \quad \lambda \leq 0 \quad \text { then } \quad x \rightarrow 0 \text { as } t \rightarrow+\infty
$$

## Polynomial Feedbacks

I. Robustness (Pervozvanski 1971)

$$
\dot{x}=\lambda x+u
$$

where $x \in \mathbb{R}$ - state, the number $\lambda \in \mathbb{R}$ is unknown, $u \in \mathbb{R}$ - control. For

$$
u=-\mu x^{3} \quad \mu>0
$$

we have
if $\quad \lambda>0 \quad$ then $\quad x \rightarrow \pm \sqrt{\lambda / \mu}$ as $t \rightarrow+\infty$

$$
\text { if } \quad \lambda \leq 0 \quad \text { then } \quad x \rightarrow 0 \text { as } t \rightarrow+\infty
$$

II. Real-life applications for automobile engine control in GMC
(Nikiforov et all, 2011, ACC)

$$
u=-\alpha x-\beta \operatorname{sign}[x]-\gamma x^{3}
$$

## Historical remarks

- Finite-time stability
(Roxin 1966, Haimo 1986, Bhat \& Bernstein 2000);
- Polynomial feedbacks
(Pervozvanskii 1971, Algöwer et al 2006)


## Historical remarks

- Finite-time stability
(Roxin 1966, Haimo 1986, Bhat \& Bernstein 2000);
- Polynomial feedbacks
(Pervozvanskii 1971, Algöwer et al 2006)


## Historical remarks

- Finite-time stability
(Roxin 1966, Haimo 1986, Bhat \& Bernstein 2000);
- Polynomial feedbacks
(Pervozvanskii 1971, Algöwer et al 2006)
- Homogeneity and finite-time stability (Bhat \& Bernstein 2005, Levant 2005, Orlov 2005);


## Historical remarks

- Finite-time stability
(Roxin 1966, Haimo 1986, Bhat \& Bernstein 2000);
- Polynomial feedbacks
(Pervozvanskii 1971, Algöwer et al 2006)
- Homogeneity and finite-time stability (Bhat \& Bernstein 2005, Levant 2005, Orlov 2005);
- Homogeneity in bi-limit (Andrieu, Praly \& Astolfi 2008, Efimov 2011);


## Historical remarks

- Finite-time stability
(Roxin 1966, Haimo 1986, Bhat \& Bernstein 2000);
- Polynomial feedbacks
(Pervozvanskii 1971, Algöwer et al 2006)
- Homogeneity and finite-time stability (Bhat \& Bernstein 2005, Levant 2005, Orlov 2005);
- Homogeneity in bi-limit (Andrieu, Praly \& Astolfi 2008, Efimov 2011);
- Uniform 2SM-observer (Cruz, Moreno \& Fridman 2010).


## System Description and Basic Assumptions

$$
\begin{equation*}
\dot{x}=A x+B u(x)+f(t, x) \tag{1}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, u \in \mathbb{R}^{m}$, the function $f: \mathbb{R}_{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ describes uncertainties and disturbances.

## System Description and Basic Assumptions

$$
\begin{equation*}
\dot{x}=A x+B u(x)+f(t, x) \tag{1}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, u \in \mathbb{R}^{m}$, the function $f: \mathbb{R}_{+} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ describes uncertainties and disturbances.

## Assumption 1

The pair $(A, B)$ is controllable, i.e.

$$
\operatorname{rank}\left[B, A B, A^{2} B, \ldots, A^{n-1} B\right]=n
$$

## Assumption 2

The uncertain function $f(t, x)$ satisfies the matching condition, i.e.

$$
f(t, x)=B \gamma(t, x)
$$

where $\gamma(t, x)$ ) is an unknown function. The function $\gamma(t, x)$ is assumed to be bounded by $\gamma_{0}(t, x) \geq 0$, i.e.

$$
\|\gamma(t, x)\|_{\infty} \leq \gamma_{0}(t, x) \text { for } \forall t>0 \text { and } \forall x \in \mathbb{R}^{n}
$$

## Definitions of stability

## Definition 1

The equilibrium point $x=0$ of the closed-loop system (1) is said to be globally finite-time stable if it is globally asymptotically stable and any solution $x\left(t, x_{0}\right)$ of (1) achieves the equilibria at some finite time moment and

$$
x\left(t, x_{0}\right)=0 \text { for } \forall t \geq T\left(x_{0}\right)
$$

where $T: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+} \cup\{0\}$ is the so-called settling-time function.

## Definitions of stability

## Definition 1

The equilibrium point $x=0$ of the closed-loop system (1) is said to be globally finite-time stable if it is globally asymptotically stable and any solution $x\left(t, x_{0}\right)$ of (1) achieves the equilibria at some finite time moment and

$$
x\left(t, x_{0}\right)=0 \text { for } \forall t \geq T\left(x_{0}\right)
$$

where $T: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+} \cup\{0\}$ is the so-called settling-time function.

## Definition 2

The equilibrium point $x=0$ of the closed-loop system (1) is said to be globally fixed-time stable if it is globally finite-time stable and the settling-time function $T\left(x_{0}\right)$ is bounded by some positive number $T_{\max }>0$, i.e. $T\left(x_{0}\right) \leq T_{\text {max }}$ for $\forall x_{0} \in \mathbb{R}^{n}$.

## Definitions of attractivity

## Definition 3

The set $M$ is said to be globally finite-time attractive for the system (1) if any solution $x\left(t, x_{0}\right)$ of (1) reaches $M$ in some finite time moment and $x\left(t, x_{0}\right) \in M$ for all $t \geq T\left(x_{0}\right)$
where $T: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+} \cup\{0\}$ is the settling-time function.

## Definitions of attractivity

## Definition 3

The set $M$ is said to be globally finite-time attractive for the system (1) if any solution $x\left(t, x_{0}\right)$ of (1) reaches $M$ in some finite time moment and

$$
x\left(t, x_{0}\right) \in M \text { for all } t \geq T\left(x_{0}\right)
$$

where $T: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+} \cup\{0\}$ is the settling-time function.

## Definition 4

The set $M$ is said to be globally fixed-time attractive for the system (1) if it is globally finite-time attractive and the settling-time function $T\left(x_{0}\right)$ is bounded by some positive number $T_{\max }>0$, i.e.

$$
T\left(x_{0}\right) \leq T_{\max } \text { for } \forall x_{0} \in \mathbb{R}^{n}
$$

## Problem Statement

Denote a closed ball of radius $r>0$ with the center in the origin by $B_{r}$, i.e. $B_{r}:=\left\{x \in \mathbb{R}^{n}:\|x\|_{\infty} \leq r\right\},\|x\|_{\infty}:=\max _{i=1,2, \ldots, n}\left|x_{i}\right|$.

## Problem Statement

Denote a closed ball of radius $r>0$ with the center in the origin by $B_{r}$, i.e. $B_{r}:=\left\{x \in \mathbb{R}^{n}:\|x\|_{\infty} \leq r\right\},\|x\|_{\infty}:=\max _{i=1,2, \ldots, n}\left|x_{i}\right|$.

## Problem 1

For given $T_{\max }>0$ and $r>0$ we need to design a feedback control $u=u(x)$ for the system (1), which provides a fixed-time attractivity property of the ball $B_{r}$ with the settling-time estimate $T_{\text {max }}$.

## Problem Statement

Denote a closed ball of radius $r>0$ with the center in the origin by $B_{r}$, i.e. $B_{r}:=\left\{x \in \mathbb{R}^{n}:\|x\|_{\infty} \leq r\right\},\|x\|_{\infty}:=\max _{i=1,2, \ldots, n}\left|x_{i}\right|$.

## Problem 1

For given $T_{\max }>0$ and $r>0$ we need to design a feedback control $u=u(x)$ for the system (1), which provides a fixed-time attractivity property of the ball $B_{r}$ with the settling-time estimate $T_{\text {max }}$.

## Problem 2

For given $T_{\text {max }}>0$ we need to design a feedback control $u=u(x)$, which guarantees fixed-time stability of the origin of the closed-loop system (1) with the settling-time estimate $T_{\text {max }}$.

## Block-Controlability Form (Drakunov et all 1990)

$$
\exists G \in \mathbb{R}^{n \times n}: y=G x \text { and }\left\{\begin{array}{l}
\dot{y}_{1}=A_{11} y_{1}+A_{12} y_{2} \\
\dot{y}_{2}=A_{21} y_{1}+A_{22} y_{2}+A_{23} y_{3} \\
\ldots \\
\dot{y}_{k}=A_{k 1} y_{1}+\ldots+A_{k k} y_{k}+A_{k k+1}(u+\gamma)
\end{array}\right.
$$

where $y=\left(y_{1}^{T}, \ldots, y_{k}^{T}\right)^{T}, y_{i} \in \mathbb{R}^{n_{i}},\left[\begin{array}{ll}0 & A_{k k+1}^{T}\end{array}\right]^{T}=G B$ and $A_{i j} \in \mathbb{R}^{n_{i} \times n_{j}}$ are blocks of the matrix $G A G^{\top}$ such that $\operatorname{rank}\left(A_{i j+1}\right)=n_{i}$

## Block-Controlability Form (Drakunov et all 1990)

$$
\exists G \in \mathbb{R}^{n \times n}: y=G x \text { and }\left\{\begin{array}{l}
\dot{y}_{1}=A_{11} y_{1}+A_{12} y_{2} \\
\dot{y}_{2}=A_{21} y_{1}+A_{22} y_{2}+A_{23} y_{3} \\
\ldots \\
\dot{y}_{k}=A_{k 1} y_{1}+\ldots+A_{k k} y_{k}+A_{k k+1}(u+\gamma)
\end{array}\right.
$$

where $y=\left(y_{1}^{T}, \ldots, y_{k}^{T}\right)^{T}, y_{i} \in \mathbb{R}^{n_{i}},\left[\begin{array}{ll}0 & A_{k k+1}^{T}\end{array}\right]^{T}=G B$ and $A_{i j} \in \mathbb{R}^{n_{i} \times n_{j}}$ are blocks of the matrix $G A G^{\top}$ such that $\operatorname{rank}\left(A_{i j+1}\right)=n_{i}$

## Algorithm

Initialization. $A_{0}=A, B_{0}=B, T_{0}=I_{n}, k=0$
Recursion. While $\operatorname{rank}\left(B_{k}\right)<\operatorname{rown}\left(A_{k}\right)$ do

$$
A_{k+1}=B_{k}^{\perp} A_{k}\left(B_{k}^{\perp}\right)^{\top}, B_{k+1}=B_{k}^{\perp} A_{k} \tilde{B}_{k}, T_{k+1}=\binom{B_{k}^{\perp}}{\tilde{B}_{k}}, k=k+1
$$

where $B_{k}^{\perp}:=\left(\text { null }\left(B_{k}^{T}\right)\right)^{T}, \tilde{B}_{k}:=\left(\text { null }\left(B_{k}^{\perp}\right)\right)^{T}$, rown - number of rows

$$
G=\left(\begin{array}{cc}
T_{k} & 0 \\
0 & I_{w_{k}}
\end{array}\right)\left(\begin{array}{cc}
T_{r-1} & 0 \\
0 & I_{w_{k-1}}
\end{array}\right) \ldots\left(\begin{array}{cc}
T_{2} & 0 \\
0 & I_{w_{2}}
\end{array}\right) T_{1}, \quad w_{i}=n-\operatorname{rown}\left(T_{i}\right)
$$

## Fixed-time Attractivity: Coordinate Transformation

Denote $\rho^{[p]}=|\rho|^{p} \operatorname{sign}[\rho]$ for $\rho \in \mathbb{R}$ and $z^{[p]}=\left(z_{1}^{[p]}, \ldots, z_{k}^{[p]}\right)^{T}$ for $z \in \mathbb{R}^{k}$.

## Fixed-time Attractivity: Coordinate Transformation

Denote $\rho^{[p]}=|\rho|^{p} \operatorname{sign}[\rho]$ for $\rho \in \mathbb{R}$ and $z^{[p]}=\left(z_{1}^{[p]}, \ldots, z_{k}^{[p]}\right)^{T}$ for $z \in \mathbb{R}^{k}$.

$$
\left\{\begin{array}{l}
\dot{s}_{1}=-\alpha_{1} s_{1}-\beta_{1} s_{1}^{[3]}+A_{12} s_{2}  \tag{2}\\
\dot{s}_{2}=-\alpha_{2} s_{2}-\beta_{2} s_{2}^{[3]}+A_{23} s_{3} \\
\cdots \\
\dot{s}_{k}=\xi\left(y_{1}, \ldots, y_{k}\right)+A_{k k+1}(u+\gamma)
\end{array}\right.
$$

$$
s=\Phi(y), s=\left(s_{1}^{T}, \ldots, s_{k}^{T}\right)^{T}, s_{i} \in \mathbb{R}^{n_{i}}, y=\left(y_{1}^{T}, \ldots, y_{k}^{T}\right)^{T}, y_{i} \in \mathbb{R}^{n_{i}}
$$

## Fixed-time Attractivity: Coordinate Transformation

Denote $\rho^{[p]}=|\rho|^{p} \operatorname{sign}[\rho]$ for $\rho \in \mathbb{R}$ and $z^{[p]}=\left(z_{1}^{[p]}, \ldots, z_{k}^{[p]}\right)^{T}$ for $z \in \mathbb{R}^{k}$.

$$
\left\{\begin{array}{l}
\dot{s}_{1}=-\alpha_{1} s_{1}-\beta_{1} s_{1}^{[3]}+A_{12} s_{2}  \tag{2}\\
\dot{s}_{2}=-\alpha_{2} s_{2}-\beta_{2} s_{2}^{3]}+A_{23} s_{3} \\
\cdots \\
\dot{s}_{k}=\xi\left(y_{1}, \ldots, y_{k}\right)+A_{k k+1}(u+\gamma)
\end{array}\right.
$$

$$
s=\Phi(y), s=\left(s_{1}^{T}, \ldots, s_{k}^{T}\right)^{T}, s_{i} \in \mathbb{R}^{n_{i}}, y=\left(y_{1}^{T}, \ldots, y_{k}^{T}\right)^{T}, y_{i} \in \mathbb{R}^{n_{i}}
$$

$$
s_{i}=y_{i}+\varphi_{i}\left(y_{1}, \ldots, y_{i}\right), \quad i=1,2, \ldots, k
$$

$$
\varphi_{i+1}=A_{i j+1}^{+}\left(\alpha_{i}\left(y_{i}+\varphi_{i}\right)+\beta_{i}\left(y_{i}+\varphi_{i}\right)^{[3]}+\sum_{j=1}^{i} A_{i j} y_{j}+\sum_{r=1}^{i} \frac{\partial \varphi_{i}}{\partial y_{r}} \sum_{j=1}^{r+1} A_{r j} y_{j}\right)
$$

where $\varphi_{1}=0, \alpha_{i}>0, \beta_{i}>0$ and $A_{i+1}^{+}=A_{i+1}^{T}\left(A_{i+1} A_{i+1}^{T}\right)^{-1}$.

$$
\xi\left(y_{1}, \ldots, y_{k}\right)=\sum_{i=1}^{k} A_{k i} y_{i}+\sum_{i=1}^{k-1} \frac{\partial \varphi_{k-1}}{\partial y_{i}} \sum_{j=1}^{i+1} A_{i j} y_{j}
$$

## Fixed-time Attractivity: Feedback Design

$$
\begin{equation*}
u(y, s)=A_{k k+1}^{+}\left(-\alpha_{k} s_{k}-\beta_{k} s_{k}^{[3]}-\xi\left(y_{1}, \ldots, y_{k}\right)\right) \tag{3}
\end{equation*}
$$

## Fixed-time Attractivity: Feedback Design

$$
\begin{equation*}
u(y, s)=A_{k k+1}^{+}\left(-\alpha_{k} s_{k}-\beta_{k} s_{k}^{[3]}-\xi\left(y_{1}, \ldots, y_{k}\right)\right) \tag{3}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
\dot{s}_{1}=-\alpha_{1} s_{1}-\beta_{1} s_{1}^{[3]}+A_{12} s_{2} \\
\dot{s}_{2}=-\alpha_{2} s_{2}-\beta_{2} s_{2}^{[3]}+A_{23} s_{3} \\
\cdots \\
\dot{s}_{k}=-\alpha_{k} s_{k}-\beta_{k} s_{k}^{[3]}+A_{k}{ }_{k+1} \gamma
\end{array}\right.
$$

## Fixed-time Attractivity: Feedback Design

$$
\begin{equation*}
u(y, s)=A_{k k+1}^{+}\left(-\alpha_{k} s_{k}-\beta_{k} s_{k}^{[3]}-\xi\left(y_{1}, \ldots, y_{k}\right)\right) \tag{3}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
\dot{s}_{1}=-\alpha_{1} s_{1}-\beta_{1} s_{1}^{[3]}+A_{12} s_{2} \\
\dot{s}_{2}=-\alpha_{2} s_{2}-\beta_{2} s_{2}^{[3]}+A_{23} s_{3} \\
\cdots \\
\dot{s}_{k}=-\alpha_{k} s_{k}-\beta_{k} s_{k}^{[3]}+A_{k}{ }_{k+1} \gamma
\end{array}\right.
$$

## Theorem (1)

If $u(G x, \Phi(G x))$ is the control of the form (3) with parameters

$$
\begin{gathered}
\alpha_{i}=\left\|A_{i+1}\right\|_{\infty}, i=\overline{1, k-1}, \quad \alpha_{k}=\frac{\gamma_{0}\left\|A_{k k+1}\right\|_{\infty}\|G\|_{1} C_{1}}{r} \\
\beta_{i}=\frac{\|G\|_{1}^{2} C_{2}}{2 T_{\max } r^{2}}, i=\overline{1, k}
\end{gathered}
$$

where $r>0$ and $T_{\max }>0$ are arbitrary positive numbers, then the ball $B_{r}$ is the globally fixed-time attractive set of the closed-loop system (1) with the settling-time function bounded by $T_{\max }$.

## Fixed-Time Stability: Sliding Mode Approach

$$
\dot{y}_{1}=y_{2}, \quad \dot{y}_{2}=u, \quad y_{1}, y_{2} \in \mathbb{R}
$$

## Fixed-Time Stability: Sliding Mode Approach

$$
\dot{y}_{1}=y_{2}, \quad \dot{y}_{2}=u, \quad y_{1}, y_{2} \in \mathbb{R}
$$

## Nested Second Order Sliding Mode Controller(Levant 1993)

$$
u=-\alpha \operatorname{sign}\left[y_{2}+\beta y_{1}^{[1 / 2]}\right], \quad \alpha>0, \quad \beta^{2} \geq 2 \alpha
$$

If $s_{1}:=y_{2}+\beta y_{1}^{[1 / 2]}=0$ is the sliding surface then $y_{2}=-\beta y_{1}^{[1 / 2]}$ and

$$
\dot{y}_{1}=-\beta y_{1}^{[1 / 2]}
$$

## Fixed-Time Stability: Sliding Mode Approach

$$
\dot{y}_{1}=y_{2}, \quad \dot{y}_{2}=u, \quad y_{1}, y_{2} \in \mathbb{R}
$$

## Nested Second Order Sliding Mode Controller(Levant 1993)

$$
u=-\alpha \operatorname{sign}\left[y_{2}+\beta y_{1}^{[1 / 2]}\right], \quad \alpha>0, \quad \beta^{2} \geq 2 \alpha
$$

If $s_{1}:=y_{2}+\beta y_{1}^{[1 / 2]}=0$ is the sliding surface then $y_{2}=-\beta y_{1}^{[1 / 2]}$ and

$$
\dot{y}_{1}=-\beta y_{1}^{[1 / 2]}
$$

## Fixed-time sliding surface

$$
s_{2}:=y_{2}+\left(y_{2}^{[2]}+\alpha_{1} y_{1}+\alpha_{2} y_{1}^{[3]}\right)^{[1 / 2]}=0
$$

If $s_{2}=0$ is the sliding surface then $y_{2}=-\left(0.5 \alpha_{1} y_{1}+0.5 \beta_{1} y_{1}^{[3]}\right)^{[1 / 2]}$ and

$$
\dot{y}_{1}=-\left(0.5 \alpha_{1} y_{1}+0.5 \beta_{1} y_{1}^{[3]}\right)^{[1 / 2]}
$$

## Fixed-Time Stability: Geometrical Interpretation



$$
s_{1}=y_{2}+\beta y_{1}^{[1 / 2]} \text { and } s_{2}=y_{2}+\left(y_{2}^{[2]}+\alpha_{1} y_{1}+\beta_{1} y_{1}^{[3]}\right)^{[1 / 2]}
$$

## Fixed-Time Stability: Theorem

$$
\left\{\begin{array}{l}
\dot{y}_{1}=A_{11} y_{1}+A_{12} y_{2}  \tag{4}\\
\dot{y}_{2}=A_{21} y_{1}+A_{22} y_{2}+A_{23}(u+\gamma)
\end{array}\right.
$$

$y_{1} \in \mathbb{R}^{n_{1}}, y_{2} \in \mathbb{R}^{n_{2}}, n_{2}=\operatorname{rank}(B), n_{1}=n-n_{2}, \operatorname{rank}\left(A_{12}\right)=n_{1} \leq \operatorname{rank}\left(A_{23}\right)=n_{2}$.

## Fixed-Time Stability: Theorem

$$
\left\{\begin{array}{l}
\dot{y}_{1}=A_{11} y_{1}+A_{12} y_{2}  \tag{4}\\
\dot{y}_{2}=A_{21} y_{1}+A_{22} y_{2}+A_{23}(u+\gamma)
\end{array}\right.
$$

$y_{1} \in \mathbb{R}^{n_{1}}, y_{2} \in \mathbb{R}^{n_{2}}, n_{2}=\operatorname{rank}(B), n_{1}=n-n_{2}, \operatorname{rank}\left(A_{12}\right)=n_{1} \leq \operatorname{rank}\left(A_{23}\right)=n_{2}$.

## Theorem (2)

The origin of the closed-loop system (4) is globally fixed-time stable with the settling-time estimate $T_{\max }>0$ if the control $u\left(y_{1}, y_{2}\right)$ has the form

$$
\begin{equation*}
u\left(y_{1}, y_{2}\right)=-A_{23}^{+}\left\{u_{e q}\left(y_{1}, y_{2}\right)+u_{d}\left(y_{1}, y_{2}\right)+u_{p}\left(y_{1}, y_{2}\right)\right\} \tag{5}
\end{equation*}
$$

## Fixed-Time Stability: Theorem

$$
\left\{\begin{array}{l}
\dot{y}_{1}=A_{11} y_{1}+A_{12} y_{2}  \tag{4}\\
\dot{y}_{2}=A_{21} y_{1}+A_{22} y_{2}+A_{23}(u+\gamma)
\end{array}\right.
$$

$$
y_{1} \in \mathbb{R}^{n_{1}}, y_{2} \in \mathbb{R}^{n_{2}}, n_{2}=\operatorname{rank}(B), n_{1}=n-n_{2}, \operatorname{rank}\left(A_{12}\right)=n_{1} \leq \operatorname{rank}\left(A_{23}\right)=n_{2} .
$$

## Theorem (2)

The origin of the closed-loop system (4) is globally fixed-time stable with the settling-time estimate $T_{\max }>0$ if the control $u\left(y_{1}, y_{2}\right)$ has the form

$$
\begin{equation*}
u\left(y_{1}, y_{2}\right)=-A_{23}^{+}\left\{u_{e q}\left(y_{1}, y_{2}\right)+u_{d}\left(y_{1}, y_{2}\right)+u_{p}\left(y_{1}, y_{2}\right)\right\} \tag{5}
\end{equation*}
$$

$u_{\text {eq }}=A_{12}^{+}\left(\left(A_{11}^{2}+A_{12} A_{21}\right) y_{1}+\left(A_{11} A_{12}+A_{12} A_{22}\right) y_{2}\right)+A_{12}^{\perp}{ }^{+} A_{12}^{\perp}\left(A_{21} y_{1}+A_{22} y_{2}\right)$, $u_{d}=\frac{\alpha_{1}+3 \beta_{1}\left\|y_{1}\right\|_{\infty}^{2}+2\left\|A_{12} A_{23}\right\|_{\infty} \gamma_{0}}{2} A_{12}^{+} \operatorname{sign}\left[s_{1}\right]+\gamma_{0}\left\|A_{12}^{\perp}\right\|_{\infty} A_{12}^{+}{ }^{+} \operatorname{sign}\left[s_{2}\right]$, $u_{p}=A_{12}^{+}\left(\alpha_{2} s_{1}+\beta_{2} s_{1}^{[3]}\right)^{\left[\frac{1}{2}\right]}+A_{12}^{\perp}{ }^{+}\left(\alpha_{2} s_{2}+\beta_{2} s_{2}^{[3]}\right)^{\left.\frac{1}{2}\right]}, A_{12}^{\perp}=\operatorname{null}\left(A_{12}\right)^{T}$
$s_{1}=A_{11} y_{1}+A_{12} y_{2}+\left(\left(A_{11} y_{1}+A_{12} y_{2}\right)^{[2]}+\alpha_{1} y_{1}+\beta_{1} y_{1}^{[3]}\right)^{\left[\frac{1}{2}\right]}, s_{2}=A_{12}^{\perp} y_{2}$ with $0.5 \alpha_{1}=\alpha_{2}=0.5 \beta_{1}=\beta_{2}=64 T_{\text {max }}^{-2}$.

## Benchmark Example

$$
\dot{x}=\left(\begin{array}{ccc}
1 & -3 & 2 \\
-2 & 0 & 3 \\
0 & -1 & 4
\end{array}\right) x+\left(\begin{array}{cc}
2 & 0 \\
-1 & 1 \\
0 & -3
\end{array}\right) u+\left(\begin{array}{c}
2 \\
0 \\
-3
\end{array}\right) \sin (t)
$$

$$
y=G x, G=\left(\begin{array}{ccc}
0.4286 & 0.8571 & 0.2857 \\
-0.8571 & 0.4857 & -0.1714 \\
-0.2857 & -0.1714 & 0.9429
\end{array}\right)
$$

$$
\left\{\begin{array}{l}
\dot{y}_{1}=A_{11} y_{1}+A_{12} y_{2} \\
\dot{y}_{2}=A_{21} y_{1}+A_{22} y_{2}+A_{23}\left(u+(11)^{T} \sin (t)\right)
\end{array}\right.
$$

$$
\begin{aligned}
& A_{11}=-0.5918, A_{12}=\left(\begin{array}{ll}
-0.4449 & 4.9469
\end{array}\right), A_{21}=\left(\begin{array}{ll}
1.2980 & 0.7184
\end{array}\right)^{T}, \\
& A_{22}=\left(\begin{array}{cc}
3.0612 & -0.8367 \\
-0.5510 & 2.5306
\end{array}\right), A_{23}=\left(\begin{array}{cc}
-2.200 & 1.000 \\
-0.400 & -3.000
\end{array}\right) \\
& \alpha_{1}=\beta_{1}=1, \alpha_{2}=\beta_{2}=0.5 \quad \Rightarrow \quad T_{\max }=8
\end{aligned}
$$






Thank you for your attention

