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Methods of disturbance influence reduction 

• Disturbance attenuation methods  
 

-  Methods            and             optimization, N. Wiener, R. Kalman  
-  Methods          optimization, G. Zames, J. Doyle, B. Francis 
-  Methods of invariant sets, F. Blanchini, A.B. Kurzhansky  
-  Invariant ellipsoids technique, B.T. Polyak, A.S. Poznyak 

               - liner matrix inequalities, S. Boyd  
 

• Disturbance rejection methods  
 

- Feed-forward control, Jean-Victor Poncelet, 1829  
-  Invariance theory, G.V. Shipanov, 1939 
-  Combined control, A.G. Ivachnenko, 1947  
-  Two channelship principle, B.N. Petrov, 1953 
-  Disturbance observer, C. Johnson, 1971  
-  Internal model control, B. Francis, W. Wonham, 1976 
-  Disturbance absorption, Ya.Z. Tsypkin, 1991 

LQ LQG
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Disturbance rejection problem 
 

Plant (controlled object)         
MxyCxy

NwBuAxx

m,


 

 

Disturbance                               }{ ww cwww  
 

Control law                                )( myu F  
 

Control process     ,yw   performance index )( yv   

 

Find control uu , so that uy uv min,)(  
 

and  closed-loop system NwyBFAxx m )(   will be stable. 
 

0)( yv      absolute invariance 

)( yv       - invariance under the stability and robustness requirements 

Attainable level of disturbance rejection 

},,{,),,()()(lim CBAwvv wwyy
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                       Control structures for disturbance rejection 

 

   

Feedback control 
Disturbance 
attenuation 

 

Feedback / feed-
forward control 

Disturbance 
compensation 
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Control system with disturbance observer structure 
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Output control problem  
 
     Consider a linear multivariable system described by the state-space model 
 

 
c m

x( t ) Ax( t ) Bu( t ) Nf ( x( t ),t ),

y ( t ) Cx( t ), y ( t ) Mx( t ),
      (1) 

 

where 
nx( t ) R - state vector, mu( t ) R  - control, 

qf ( x( t ),t ) R - unknown distur-

bance from certain class 
1 2f ff ( x( t ),t ) f ,|| f || c || x || c= ,  

r
cy ( t ) R ,

p
my ( t ) R , - output controlled and measured variables respectively.  

 

We will assume that rank B m ,  rank rank rankC r, N q, M p. 
 

     Matrices 
1 1

1CBS ( ) CA B, 2 1

2MNS ( ) MA N  are known as Markov 

parameters of system (1). The integers 1 2,  are relative orders of control and distur-

bance transfer functions i.e. the minimal integers so that 1 0CBS ( ) , 2 0MNS ( ) .  
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Output control problem 
 

Let the following assumptions take place: 
 

1

2

(a) rank rank

(b) rank rank

CB

MN

B S ( ) r,

N S ( ) p.
    (2) 

 

Without loss of generality for simplicity reason we will assume that 1 2 1 and 

use the notation 1 1CB CB MN MNS ( ) S , S ( ) S  . 

 The control problem is to find the control u( t ) , depending from the measured 

variables, which ensure the reference signal *y ( t ) tracking, which formed by the given 

reference model refy ( t ) A y ( t ) y ( t )  and disturbance f (( x ),t )  decoupling for all 

disturbances from certain class .  
Formally the control goal is  
 

lim *
c||e ( t )|| , t , 

where *
c ce ( t ) y ( t ) y ( t ) - control error, * - pre-established sufficiently small 

constant. 
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Inverse model based disturbance observer design 
 
     The first step of the DDC design procedure is the state and disturbance observer 

design using UIO approach. Let 
n pz( t ) Rx( t ) R  be an aggregated auxiliary 

variables, where R  is the appropriate aggregate matrix such as 
T Trank M R n .  

Then the state vector estimation may be obtained as follows 

 

),(,

1

QP
R

M
x

R

M

z

ym
 mx̂( t ) Py ( t ) Qx( t )          (3) 

                            

where matrices 
n pP R ,

n n pQ R are defined as         
  

0 0

p n p n

p,n p n p,p

MP I , RQ I , PM QR I ,

MQ , RP .
      (4) 
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Unknown input observer. Structural synthesis 
 

     The aggregated vector estimation x( t )  is given by minimal-order UIO 
 

1 0m mx( t ) Fx( t ) G y ( t ) Hy ( t ) G u( t ).   (5) 

 
     The UIO parameters are determined from “invariance conditions”  

    

0 10 0

R HM A F R HM GM ,

RN HMN ,G RB ,G G FH.
    (6) 

 
     If assumption (2b) takes place, a solution of (5) may be obtained as 
 

     
0 1N N

MN N n MN

F RΠ AQ, G RB, G RΠ AP,

H RNS , Π I BS M ,
          (7) 
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Inverse model-based disturbance observer 
 

     Taking the unknown disturbance estimation in the form 
     

            ˆ ˆ ˆf ( t ) N x( t ) Ax( t ) Bu( t )  .        (8) 
 

     The minimal-order state and disturbance observer (SDO) equation: 
 

N N m MN m Nx( t ) RΠ AQx( t ) RΠ APy ( t ) RNS y ( t ) RΠ Bu( t ),                                                       

N m m MB

N MN N

f̂ ( t ) C ( y ( t ) MAQx( t ) MAPy ( t ) S u( t )),

C S N PΩ .
                  (9) 

 

     The estimation errors x ˆe ( t ) x( t ) x( t ), f
ˆe ( t ) f ( x,t ) f ( t )   

 

x x x x

f N x

e ( t ) F R e ( t ), e ( t ) Qe ( t ),

e ( t ) C MAQe ( t ).
       (10) 
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  Unknown input observer. Parametric synthesis 
 

Concretely define the matrices 
1 1

2 2

P Q
P Q ,

P Q
 

with 1 1 0p p,n pP I , Q , than 
1

2 2 n pR Q P I     and   1P  , 2Q     

 

are arbitrary matrices with 2det 0Q .  

         For system representation  

   
11 12 1

21 22 2

0

p

p n p,p

n p

A A N
A , M I , N

A A N
     (11) 

the observer dynamics matrix has the form: 
 

11

1

1
2 22 2 12 2

12 12 22 22 2 1 12

1 1

N

N q

F R Q A P A Q ,

A A , A A N N A

Ω I N N .

       (12) 
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Unknown input observer. Parametric synthesis 
 

Thus the matrix 2Q  defines the similarity transformation and doesn’t change the 

spectrum of 1 1F R , which completely determined by arbitrary matrix 2
n p pP R . The 

last may be choused by pole placement method if pair 22 12( )A ,A  is observable. Such a 

condition is equivalent to the well-known UIO design solvability condition, namely 

observable of matrix pair ( )NΠ ,M . The aggregate matrix R  is determined up to an 

arbitrary nonsingular matrix  2Q . 

      

)...())(( **
1

*
2 pnPF observableis),( 1222 AA

P2 
Tuning 

parameters 
QAPAQRF )()( 12222

UIO pole placement Solvability conditions 
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Regularized disturbance observer design 
 

The observability condition is violated in the case when p q.  

At that 
1

0NΩ  and F( R ) doesn’t depend from 2P .  

In such singular case for the tuning properties guarantee it is possible to use the so-
called „regularized“ UIO , which ensure the appriximately invariance with respect the the 
unknown disturbance 

 
2 2

min
H

RN HCN H       (13) 
  

where 0  -regularization parameter.  
 
Then 

 
1

TT
q MN MN N nH RNS I S S ,Π I H M   (14) 
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Regularized SDO design problem solution 
 
 

1 1

1

1

22 2 12 22 22 2 12

T T
1 1 1

1 1
T T T

1 1 1 1 1 1

N N

N q

N q q q

F A P Ω A , A A N Ψ A ,

Ψ N I N N ,

Ω I N N I N N I N N .

              (15)

       
Estimation error equations for the regularized state and disturbance observer are 

the following: 
1

T

1
T

x x q MN MN

f N N x

n q MN MN

e ( t ) F e ( t ) RN I S S f ( x,t ),

e ( t ) N PΩ H MAQe ( t )

N I PM I S S f ( x,t )

         (16) 

and for small value of  may be done sufficiently small. 
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Disturbance compensator design 
 
     The disturbance compensative control is a function of reference signal and distur-

bance estimation in the form of TDF controller. In the usual case of “square plant” 

(r m ) under the assumption (2a) 
 

1*
CB ref A CN A

ˆˆu ( t ) S ( y ( t ) C x( t ) S f ( t )), C A C CA.          (17) 

 
     If system structure non-singularity condition take place  

 

 

1

rank
m CB CN

MN MB q

I S S
S m q, S

S S I
                                  (18) 

 
then disturbance estimation may be eliminated from the controller equation and DDC 
has the form of two-degree-of-freedom controller.  
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Disturbance decoupling controller design  
 

                                                   0CNS   

DDC equations are: 
0 0

N N N m N B refx( t ) F x( t ) RΠ A ( PΩ H )y ( t ) Π H y ( t ),              (19) 
1 1

0 0 0 1

*
CB ref A CB A N N m

N B A B CB N MN

u ( t ) S ( y ( t ) C Qx( t )) S C ( PΩ H )y ( t )),

F RΠ A Q, A A H C , H BS , H NS .
 

 

  
The realizable controller may be obtained using the disturbance estimations 

dynamically transformed by the internal dynamic filter: 
1

1

*
CB A CNˆu ( t ) S ( y ( t ) C x( t ) S f ( t ))

ˆf ( t ) f ( t ) ( ) f ( t ),
 - small filter parameters      (20) 

 DDC equations are: 
1

1 2 1

1
1 2

1 *
CB CN

CB ref A N m m

u( t ) u( t ) ( )( ( t ) S S ( t )), u ( t ) u( t ) ( t ),

ˆ( t ) S ( y ( t ) C x( t )), ( t ) C ( y ( t ) MAQx( t ) MAPy ( t )).
    (21) 

,0),,,(det MNBCS

0),,,(det MNBCS

10,10
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Disturbance decoupling controller with fast filter structure 
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Closed-loop system with disturbance decoupling controller analysis 
 

      If system structural matrix S  is nonsingular, the closed-loop system equation is: 
 

                       

0

0

B B ref x

*
B A B B

x( t ) A x( t ) Π Nf ( t ) H y ( t ) Le ( t ),

A A H C Π A H A C,
                 (22) 

 

     The control goal is achieved with 0*
, if closed-loop system (22) is stable, 

because xe ( t )  tends to zero due to properties of UIO.  

     For nonminimum-phase systems, matrix 
0A  is unstable. The problem of closed-

loop system stabilizing arises, moreover simple additional state feedback 
* ˆu( t ) u ( t ) Kx( t )  doesn’t change closed-loop matrix spectrum because 

0BΠ ( A BK ) .  

In such a case the local optimal control method may be applied. 
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Local optimal control for disturbance rejection 
 

2 2
minref A CB CN

u

ˆˆy ( t ) C Ax( t ) S u( t ) S f ( t ) u( t )        (23) 

 
The corresponding control law is given by 
 

 

1

1
T T

1

*
ref A CN

*
CB m CB CB CB

ˆˆu ( t ) D y ( t ) C Ax( t ) S f ( t )

D S u ( t ), D I S S S ,
        (24) 

 

From (23) the equation of closed-loop system follows 
 

0

0

ref B x

*
A B

B n

x( t ) A ( )x( t ) BD y ( t ) Π Nf ( x,t ) L e ( t ),

A ( ) A BD C Π A BD A C,

Π I BD C.

      (25) 
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Closed-loop system properties 
 
 

      Using the “combined” control 
* ˆu( t ) u ( t ) Kx( t )  find that 

1
T

0 0 m CB CBA ( ,K ) A ( ) B K , B B I S S ,  

      Closed-loop system with combined control may be stabilized, if matrix pair 

0A ( ), B  is controllable.  

  
     The control error is given by 

  

1
T* *

c c CB m CB CBe ( t ) A e ( t ) S I S S u ( t )                                    (26) 

and control goal is achieved with 
*( ). 

     

Attainable 
accuracy of 

control 
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Closed-loop two-time-scale system 
 

For the structural singular plant closed-loop system with DDC includes internal filter 
 

                      

0

1 1 (27)

B CN B ref x

f

x( t ) A x( t ) Nf ( x( t ),t ) H S f ( t ) H y ( t ) Le ( t ),

f ( t ) f ( t ) ( ) f ( x( t ),t ) ( )e ( t )
                          

 
     The closed-loop system (27) is two-time scale system, in which slow motion under 
0  coincides with the process in the system with “ideal” DDC and the fast one satisfied 

the dynamic equation: 
 

0 0E( )x( t ) A x( t ) B f ( x( t )).                   (28) 

 
0

0 00

10 0

n B CN

qm q,n q

NI A H S
E( ) , A , B .

( )II I
 

Singular 
perturbation 



23 
 

 

Robust decoupling controller design 
 
Fast motion stability problem reduced to the “absolute” stability problem of system 

(28) with nonlinearities from certain class. 
 
 For the particular case of linear state-dependent uncertain disturbance 

Af ( x( t ),t ) x( t ) , where A A A,|| || c  is the system (1) dynamic matrix 

perturbation 

0
0

1 11

A B CN
A

A q

A N H S
A ( )

( ) I
     (29) 

and fast motion stability analysis reduced to the robust stability problem 
   

0Re ( ) -A A AA ( ) , || || c .           (30) 
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Disturbance decoupling controller existence conditions   
 
 

Invertability conditions 
 
 
 
Structural nonsingularity conditions  
 
 
 
 
 
 
Input (strong) observability conditions  
  

         NA, M  is observable (detectable)

1

2

(a) rank rank

(b) rank rank

CB

MN

B S ( ) r,

N S ( ) p.

1

rank m CB CN

N MB q

I S S
S m q, S

C S I

1det 0 q N MB CB CN, I C S S S
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 DD existence conditions extension 
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Example. Magnetic suspension disturbance rejection control 
 

Linearized mathematical model of the system  
 

1 1

2 2
2

3 30 1 2

1 1

1 2
1 1 3

0 1 0 0 0 0

0 0 1 0 0

0 1

0 0 0 0 0

c m m

x ( t ) x ( t )

x ( t ) x ( t )h
u( t ) f ( t ),

x ( t ) x ( t )a a a b

f ( t ) f ( t )v

y ( t ) x ( t ), y ( t ) x ( t ), y ( t ) x ( t )

                 

 

where input )()(1 ttf  and state-dependent  disturbances ))(),(()(2 tutxftf ,                  
 

characterized the external forces and system's non-stationary parameters variations. 
 

        Control problem: using the measurements )()( 1
1 txtym , )()( 3

2 txtym  find the 

control function )(tu  so that the controlled output 1cy ( t ) x ( t )  (deviation from the 
desired position) tracks the signal, generated by reference model    

2 1 0 0y ( t ) y ( t ) y ( t ) y ( t )  .               
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The designed DD controller has 
the structure of multivariable  

PI-controller with small 
parameters 
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Simulation results 
                PI – controller 
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Disturbance estimation by PI and UI observers 
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UIO – based disturbance compensative controller 
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Disturbance decoupling controller 
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Example.  Chaotic oscillator synchronisation      
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Conclusion 
 

 Disturbance decoupling compensator (DDC) design method for 
multivariable systems measurements is proposed using the UIO 
technique.  
 

 The design procedure includes state and disturbance observer design and 
disturbance compensator design. 

 

 If system structure non-singularity conditions take place, the disturbance 
estimation may be eliminated from the control law and DDC equations 
are obtained in the explicit form.  

 

 For the case when such a conditions are violated the realizable form of 
the DDC should be included additional internal dynamic filter with small 
time constant. 

 

 For two-time-scale closed-loop system if the fast motion is stable the 
slow one coincides with the processes in the system with ideal 
compensator.  
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            Thank you for your attention! 


